Math, asked by gummadipudimohanredd, 1 month ago

if alpha beeta are roots of ax²+bx+c find the value of1/alpha²+1/beeta²​

Answers

Answered by amansharma264
4

EXPLANATION.

α, β are the roots of the quadratic equation.

⇒ f(x) = ax² + bx + c.

As we know that,

Sum of the zeroes of the quadratic equation.

⇒ α + β = -b/a. - - - - - (1).

Products of the zeroes of the quadratic equation.

⇒ αβ = c/a. - - - - - (2).

To find :

⇒ 1/α² + 1/β².

⇒ β² + α²/α²β².

As we know that,

Formula of :

⇒ (x² + y²) = (x + y)² - 2xy.

Using this formula in the equation, we get.

⇒ 1/α² + 1/β² = [β² + α²]/(α²β²).

⇒ 1/α² + 1/β² = [(α + β)² - 2αβ]/(αβ)².

Put the values in the equation, we get.

⇒ 1/α² + 1/β² = [(-b/a)² - 2(c/a)]/(c/a)².

⇒ 1/α² + 1/β² = [b²/a² - 2c/a]/(c/a)².

⇒ 1/α² + 1/β² = [b² - 2ac/a²]/(c²/a²).

⇒ 1/α² + 1/β² = (b² - 2ac)/a² x a²/c².

⇒ 1/α² + 1/β² = (b² - 2ac)/c².

                                                                                                                         

MORE INFORMATION.

Nature of the roots of the quadratic expression.

(1) = Real and unequal, if b² - 4ac > 0.

(2) = Rational and different, if b² - 4ac is a perfect square.

(3) = Real and equal, if b² - 4ac = 0.

(4) = If D < 0 Roots are imaginary and unequal Or complex conjugate.

Answered by llItzDishantll
9

Answer:

EXPLANATION.

α, β are the roots of the quadratic equation.

⇒ f(x) = ax² + bx + c.

As we know that,

Sum of the zeroes of the quadratic equation.

⇒ α + β = -b/a. - - - - - (1).

Products of the zeroes of the quadratic equation.

⇒ αβ = c/a. - - - - - (2).

To find :

⇒ 1/α² + 1/β².

⇒ β² + α²/α²β².

As we know that,

Formula of :

⇒ (x² + y²) = (x + y)² - 2xy.

Using this formula in the equation, we get.

⇒ 1/α² + 1/β² = [β² + α²]/(α²β²).

⇒ 1/α² + 1/β² = [(α + β)² - 2αβ]/(αβ)².

Put the values in the equation, we get.

⇒ 1/α² + 1/β² = [(-b/a)² - 2(c/a)]/(c/a)².

⇒ 1/α² + 1/β² = [b²/a² - 2c/a]/(c/a)².

⇒ 1/α² + 1/β² = [b² - 2ac/a²]/(c²/a²).

⇒ 1/α² + 1/β² = (b² - 2ac)/a² x a²/c².

⇒ 1/α² + 1/β² = (b² - 2ac)/c².

                                                                                                                         

Similar questions