Math, asked by Ankitadas11, 1 year ago

If alpha + beta =90 degrees, then proof that (sec alpha +sin beta) /sin alpha =tan alpha +2 tan beta. Plz give me the correct answer. It is urgent

Answers

Answered by Anant02
11

 \alpha  +  \beta  = 90 \\  \frac{ \sec( \alpha )  +  \sin( \beta ) }{ \sin( \alpha ) }  =  \tan( \alpha ) +  2 \tan( \beta )  \\ rhs \\  =  \tan( \alpha )  + 2 \tan( \beta )  \\  =  \frac{ \sin( \alpha ) }{ \cos( \alpha ) }  +  2\frac{ \sin( \beta ) }{ \cos( \beta ) }  \\  =  \frac{ \sin( \alpha ) \cos( \beta )  + 2 \sin( \beta )  \cos( \alpha )  }{ \cos( \alpha )  \cos( \beta ) }  \\  =  \frac{ \sin( \alpha ) \cos(90 -  \alpha )  + 2 \sin( \beta ) \cos( \alpha )}{ \cos( \alpha )   \cos(90 -  \alpha ) }  \\  =  \frac{ \sin( \alpha )  \sin( \alpha )  + 2 \sin( \beta )  \ \cos( \alpha )   }{ \cos( \alpha ) \sin( \alpha )  }  \\  =  \frac{1 -  { \cos( \alpha ) }^{2} +  2 \sin( \beta )  \cos( \alpha ) }{ \cos( \alpha ) \sin( \alpha )  }  \\  =  \frac{1}{ \cos( \alpha ) \sin( \alpha )  }  +  \frac{ -  \cos( \alpha )  + 2 \sin( \beta ) }{ \sin( \alpha ) }  \\   =  \frac{1}{ \cos( \alpha )  \sin( \alpha ) }  +  \frac{ -  \cos(90 -  \beta ) + 2 \sin( \beta )  }{ \sin( \alpha ) }  \\  =  \frac{1}{ \cos( \alpha ) \sin( \alpha )  }  +  \frac{ \sin( \beta ) }{ \sin( \alpha ) }  \\ =   \frac{ \sec( \alpha ) }{ \sin( \alpha ) }  +  \frac{ \sin( \beta ) }{ \sin( \alpha ) }  \\  =  \frac{ \sec( \alpha ) +  \sin( \beta )  }{ \sin( \alpha ) }   \\  = lhs \\ proved
Answered by Dhruv4886
3

it is true when α + β = 90° then (sec α +sin β) /sin α = tan α +2 tan β  

Given:

α + β = 90°

(sec α +sin β) /sin α = tan α +2 tan β

To find:

Prove that (sec α +sin β) /sin α = tan α +2 tan β

Solution:

Given α + β = 90°

We need to prove (sec α +sin β) /sin α = tan α +2 tan β  

Take  RHS =  tan α +2 tan β  

= \frac{sin \alpha }{cos\alpha } + \frac{2 sin\beta }{cos \beta }

= \frac{sin\alpha cos\beta +2 sin\beta cos\alpha  }{ cos\alpha cos \beta }

= \frac{sin\alpha cos(90 - \alpha ) +2 sin\beta cos\alpha  }{ cos\alpha cos (90-\alpha ) }   [ ∵ β = 90 - α ]

= \frac{sin\alpha sin \alpha +2 sin\beta cos\alpha  }{ cos\alpha sin \alpha  }

= \frac{sin^{2} \alpha +2 sin\beta cos\alpha  }{ cos\alpha sin \alpha }

= \frac{1 - cos^{2} \alpha  +2 sin\beta cos\alpha  }{ cos\alpha sin\alpha  }           [ ∵ sin²α = 1 - cos²α]

= \frac{1}{cos\alpha sin\alpha} + \frac{- cos^{2} \alpha  +2 sin\beta cos\alpha  }{ cos\alpha sin\alpha  }  

=  \frac{1}{cos\alpha sin\alpha} + \frac{cos\alpha (-cos\alpha  +2 sin\beta ) }{ cos\alpha sin\alpha  }

= \frac{1}{cos\alpha sin\alpha} + \frac{ (-cos\alpha  +2 sin\beta ) }{  sin\alpha  }

= \frac{1}{cos\alpha sin\alpha} + \frac{ (- sib\beta   +2 sin\beta ) }{  sin\alpha  }

= \frac{1}{cos\alpha sin\alpha} + \frac{ ( sin\beta ) }{  sin\alpha  }

=  \frac{sec\alpha }{sin\alpha} + \frac{ sin\beta }{  sin\alpha  }  

=  \frac{ sec\alpha+sin\beta }{  sin\alpha  } = LHS

Therefore, it is proven that (sec α + sin β) /sin α = tan α +2 tan β  

#SPJ2

Similar questions