Math, asked by alia79, 1 year ago

If alpha + Beta = 90°,
then find the maximum and minimum value of sin alpha and sin beta ...

step by step solution required

❎Don't spam ❎

Answers

Answered by siddhartharao77
80
The minimum values of sin alpha and sin beta are (-1/2) and (1/2).


Hope this helps!
Attachments:

alia79: thnq :)
siddhartharao77: wlcm :-)
Answered by aquialaska
13

Answer:

Maximum and minimum value of sinα sinβ is 1/2 and -1/2  respectively.

Step-by-step explanation:

Given: \alpha+\beta=90^{\circ}=\frac{\pi}{2}

To find: Maximum and Minimum Value of sin\,\alpha\:\,sin\,\beta

Consider,

sin\,\alpha\:\,sin\,\beta

=sin\,\alpha\:\,sin\,(\frac{\pi}{2}-\aplha)

Using Complementary angle rule,

=sin\,\alpha\:\,cos\,\alpha

=\frac{2}{2}\times sin\,\alpha\:\,cos\,\alpha

=\frac{2sin\,\alpha\:\,cos\,\alpha}{2}

Using Half Angle formula of trigonometry,

=\frac{sin\,2\alpha}{2}

Range of the sin function is [ -1 , 1 ]

⇒ Maximum Value = 1

⇒ Minimum Value = 1

So, Maximum Value of sinα sinβ = \frac{1}{2}

Minimum Value of sinα sinβ = \frac{-1}{2}

Therefore, Maximum and minimum value of sinα sinβ is 1/2 and -1/2  respectively.

Similar questions