Math, asked by richa20031, 1 year ago

if alpha , beta are roots of x²+5x+a=0 and 2alpha + 5beta =-1, then find the value of a

Answers

Answered by Dhinu
65
Ans. is a = (-24) ... solution is in the pic :)
Attachments:
Answered by codiepienagoya
69

Given:

roots:

\bold{x^2+5x+a=0}\\\bold{2\alpha +5 \beta =-1}\\

To find:

a=?

Solution:

x^2+5x+a=0.....(i)\\2\alpha +5 \beta =-1....(ii)\\

Compare the value from the standard equation: ax^2+bx+c=0

\to a= 1\\\to b=5\\\to c=a\\

\alpha+ \beta= \frac{-b}{a} \ \ \ \ and \ \ \ \ \alpha\beta= \frac{c}{a}\\\\(\alpha+ \beta)= -5 \ \ \ \ and \ \ \ \ \alpha \beta = a\\

Solve the equation (ii):

\bold{2\alpha +5 \beta =-1}\\\\\Rightarrow  2\alpha +3 \beta+2\beta =-1\\\\\Rightarrow  2\alpha +2\beta +3 \beta=-1\\\\\Rightarrow  2(\alpha +\beta) +3 \beta=-1\\\\\therefore \alpha +\beta= -5\\\\\Rightarrow  2(-5) +3 \beta=-1\\\\\Rightarrow  -10 +3 \beta=-1\\\\\Rightarrow  3 \beta=-1+10\\\\\Rightarrow  3 \beta=9\\\\\Rightarrow  \beta=\frac{9}{3}\\\\\Rightarrow  \beta=3\\\\

\therefore \beta = 3 \ and \ \ \ (\alpha+ \beta)= -5\\\\\ So, \alpha = -8\\\\\Rightarrow \alpha+ \beta= -5\\\\\Rightarrow \alpha+ 3= -5\\\\\Rightarrow \alpha= -8\\\\

roots \alpha\  and \  \beta are -8 and 3.

\therefore \alpha \beta= \frac{c}{a}\\\\\ where,  c=a  \ \ and a= 1\\\\ \alpha \beta= a\\\\\Rightarrow -8 \times 3= a\\\\\Rightarrow -24= a\\\\

The final value of a is -24.

Similar questions