Math, asked by niraj51, 1 year ago

if alpha,beta are the roots of equation 1/x+a + 1/x+b =1/c and alpha+beta =0 show that alphabeta = -(asquare + b square/2 )

Answers

Answered by mysticd
30

Answer:

\red {\alpha \beta } \green {= \frac{-(a^{2}+b^{2})}{2}}

Step-by-step explanation:

 \frac{1}{x+a} + \frac{1}{x+b}= \frac{1}{c}

\implies \frac{x+b+x+a}{(x+a)(x+b)} = \frac{1}{c}

\implies \frac{(2x+a+b)c}{x^{2}+(a+b)x+ab} = 1

\implies 2cx + (a+b)c = x^{2} + (a+b)x + ab

\implies x^{2} + (a+b-2c)x + [ab- (a+b)c ]= 0

/* Compare above equation with Ax^{2}+Bx+C=0, we get

 A = 1 , B = (a+b-2c) , C = ab-(a+b)c

 It \: is \: given \:that \: \alpha \:and \:\beta \\are \: roots \: of \: Quadratic\: equation

 i) \alpha + \beta = 0\:(given)

\implies \frac{-B}{A} = 0\: (given)

\implies \frac{-(a+b-2c)}{1} = 0

\implies a+b = 2c

\implies \frac{a+b}{2} = c \:---(1)

 \alpha \beta = \frac{C}{A}\\= \frac{ab-(a+b)c}{1} \\= ab - (a+b) \frac{(a+b)}{2} \: [From \:(1)]

  = \frac{2ab - (a+b)^{2}}{2}\\= \frac{2ab- (a^{2}+2ab+b^{2}}{2}\\= \frac{ 2ab - a^{2}-2ab -b^{2}}{2}\\= \frac{-a^{2}-b^{2}}{2} \\= \frac{-(a^{2}+b^{2})}{2}

Therefore.,

\red {\alpha \beta } \green {= \frac{-(a^{2}+b^{2})}{2}}

•••♪

Answered by kartiksaravgi123
0

Answer:

It will help

Mark me in Brainlist

Attachments:
Similar questions