Math, asked by skabil, 1 year ago

If Alpha, Beta are the
roots of the equation
3x²+7x-2=0 Find the
values of
alpha/beta + beta/alpha​

Answers

Answered by ayush3520
5

alpha/beta+beta/alpha

(alpha²+beta²)/alpha*beta

alpha+beta=-b/a=-7/3

alpha*beta=c/a=-2/3

alpha²+beta²=(alpha+beta)² - 2*alpha*beta

alpha²+beta²=49/9-(-4/3)

alpha²+beta²=49/9+4/3

alpha²+beta²=61/9

therefore,

your answer is

61/9÷-2/3

61/9*-3/2

-122/3

Answered by Raja395
9

Answer:

37/6

Step-by-step explanation:

3x² + 7x - 2 = 0

 \alpha  +  \beta  = \:( - b \div a)  =   (- 7 \div 3)  \\  \alpha  \beta  = (c \div a) = ( - 2\div 3)\\ ( \alpha  \div  \beta ) \:  +  \: ( \beta  \div  \alpha ) \\  =  \: ( { \alpha }^{2}  +  { \beta }^{2} ) \div ( \alpha  \beta ) \\  =  \:  ({( \alpha  +  \beta )}^{2}  - (2 \alpha  \beta )) \div ( \alpha  \beta ) \\  =  \: ({( \alpha  +  \beta )}^{2} \:  \div ( \alpha  \beta ))  - ((2 \alpha  \beta ) \div ( \alpha  \beta )) \\  =  \: ({( \alpha  +  \beta )}^{2} \:  \div ( \alpha  \beta ))  - (2) \\  =  \: ({( - 7 \div 3)}^{2} \div ( - 2 \div 3)) - (2) \\  =  \: (49 \div 6) - 2 \\ =  \:  37 \div 6

Similar questions