Math, asked by srisayan7825, 9 months ago

If alpha,beta are the roots of the equation 7x^2+ax+2=0 and if beta -alpha =-13\7 ,then find the value of a

Answers

Answered by rishu6845
21

Answer:

a \:  =  - 15 \: or \: 15

Step-by-step explanation:

Given---->

 \alpha  \: and \:  \beta  \: are \: the \:zeroes \: of \: the \: equation \\ 7 {x}^{2}  + ax + 2 = 0

and \: if \:  (\beta  -  \alpha ) =  -  \dfrac{13}{7}

To find ---->

value \: of \: a

Concept used ----> 1)

if \:  \alpha  \: and \:  \beta  \: are \: roots \: of \: equation \\ a {x}^{2} + bx + c = 0 \: then \\  \alpha  +  \beta  \:  =  -  \dfrac{coefficient \: of \: x}{coefficient \: of \:  {x}^{2} }  \\  \alpha  \beta  \:  =  \dfrac{constant \: term}{coefficient \: of \:  {x}^{2} }

2)

 {(a - b)}^{2} \:  =  {(a + b)}^{2} - 4ab

Solution----> ATQ,

7 {x}^{2}  + ax + 2 = 0

 \alpha  +  \beta  =  -  \dfrac{coefficient \: of \: x}{coefficient \: of \:  {x}^{2} }

 =  >  \alpha  +  \beta  =  -  \dfrac{a}{7}

 =  >  \alpha  \beta  =  \dfrac{constant \: term}{coefficient \: of \:  {x}^{2} }

 =  >  \alpha  \beta  =  \dfrac{2}{7}

now

 \beta  -  \alpha  =  -  \dfrac{13}{7}

squaring \: both \: sides \: we \: et

 =  >  {( \beta   - \alpha )}^{2}  =  {( -  \dfrac{13}{7}) }^{2}

 =  >  {( \beta  +  \alpha )}^{2}  -  \alpha  \beta  =  \dfrac{169}{49}

 =  >  {( -  \dfrac{a}{7}) }^{2}  - 4( \dfrac{2}{7}) =  \dfrac{169}{49}

  =  >  \dfrac{ {a}^{2} }{49}  -  \dfrac{8}{7}  =  \dfrac{169}{49}

 =  >  \dfrac{ {a}^{2} }{49} \:  =  \dfrac{169}{49}   +  \dfrac{8}{7}

 =  >  \dfrac{ {a}^{2} }{49} =  \dfrac{169 + 56}{49}

49 \: is \: cancel \: out \: from \: each \: side

 {a}^{2}  = 225

 taking \: square \: root \: of \: both \: sides \:

 =  > a =  - 15 \: or \: 15

Answered by Anonymous
3

\huge\boxed{\fcolorbox{violet}{violet}{Answer}}

Attachments:
Similar questions