Math, asked by Raghavkanojia2005, 11 months ago

if alpha beta are the zero of polynominal p(x) 4x ² + 3x +7 then
1 \div  \alpha  + 1 \div  \beta
is equal to​

Answers

Answered by NooBSNiPER
0

Answer:

3/7

Step-by-step explanation:

4x²+3x+7=0

let the zeros of the equation be a & b

so a+b=3/4..........eq1

a*b=7/4...........eq2

using eq2

1/a=4b/7

1/b=4a/7

as in question,

(1/a)+(1/b)=(4b/7)+(4a/7)

=(a+b) * 4/7 put (a+b)=3

=12/7

is your answer

Answered by Anonymous
2

\bold{\huge{\underline{\underline{\rm{ Given :}}}}}

 \alpha  \: and \:  \beta Are the zeros of the Polynomial 4 {x}^{2}  + 3x + 7

\bold{\huge{\underline{\underline{\rm{ To\:Find :}}}}}

 \frac{1}{ \alpha }  +  \frac{1}{  \beta }  =

\rule{200}{1}

\</em></strong><strong>r</strong><strong><em>e</em></strong><strong><em>d</em></strong><strong><em>{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

First find the zeros of given polynomial-

4 {x}^{2}  + 3x + 7 \\

Comparing this polynomial by ax² + bx + c = 0

=> a = 4

=> b = 3

=> c + 7

Formula to find Zeros -

  • x =  \frac{ - b +  \sqrt{ {b}^{2}  - 4ac} }{2a}

x  =  \frac{ - 3 +  \sqrt{( {3)}^{2} - 4 \times 4 \times 7 } }{2 \times 4}  \\ x =  \frac{ - 3 +  \sqrt{9 - 112} }{8}  \\ x =  \frac{ - 3 +  \sqrt{ - 103} }{8}

so ,

 \alpha  =  \frac{ - 3 +  \sqrt{ - 103} }{8}  \\  \beta  =  \frac{ - 3 -  \sqrt{ - 103} }{8}

\rule{200}{1}

 \frac{1}{ \alpha }  +  \frac{1}{ \beta }  =

 =  \frac{1}{ \frac{ - 3 +  \sqrt{ - 103} }{8} }  +  \frac{1}{ \frac{ - 3 -  \sqrt{ - 103} }{8} }  \\  \\  =  \frac{8}{  \sqrt{ - 103} - 3 }   -  \frac{8}{ \sqrt{ - 103  } + 3 }  \\ \\   =  \frac{8( \sqrt{ - 103}  + 3) - 8( \sqrt{ - 103} - 3) }{( \sqrt{ - 103} - 3)( \sqrt{ - 103} + 3)  }  \\  \\  =  \frac{8( \sqrt{ - 103} + 3 -  \sqrt{ - 103 } + 3)  }{( { \sqrt{ - 103} )}^{2}  - ( {3})^{2} }  \\  \\  =  \frac{8(6)}{ - 103 - 9}  \\  \\  =  \frac{48}{ - 12}  \\  \\  =  - 4

\rule{200}{1}

So,

 \frac{1}{ \alpha }  +  \frac{1}{ \beta }  =  - 4

\rule{200}{1}

Mark as Brainliest !! ✨✨

Similar questions