Math, asked by SahilNihalani, 10 months ago

if alpha,beta are the zeroes of polynomial kx2+5x+2 such that 1/alpha2+1/beta2 = 17/4 , find k

Answers

Answered by pranavkaul16
2

Step-by-step explanation:

above is the answer of the question...

please mark

Attachments:
Answered by Qwparis
0

The correct answer is 2.

Given: The equation = kx^{2} +5x+2=0.

\frac{1}{a^{2} } +\frac{1}{b^{2} }=\frac{17}{4}.

To Find: The value of k.

Solution:

\frac{1}{a^{2} } +\frac{1}{b^{2} }=\frac{17}{4}

\frac{a^{2} +b^{2} }{a^{2} b^{2} }=\frac{17}{4}

\frac{(a+b)^{2}-2ab }{(ab)^{2} }=\frac{17}{4}   (equation 1)

Sum of roots  = a + b

= \frac{-(coefficient of x)}{coefficient of x^{2} }

a + b = \frac{-5}{k}

Product of roots = ab

= \frac{constant}{coefficient of x^{2} }

ab = \frac{2}{k}

Put these values in equation 1.

\frac{(\frac{-5}{k} )^{2}-2(\frac{2}{k} ) }{(\frac{2}{k} )^{2} } =\frac{17}{4}

\frac{\frac{25}{k^{2} }-\frac{4}{k} }{\frac{4}{k^{2} } } =\frac{17}{4}

\frac{25-4k }{4} =\frac{17}{4}

25 - 4k = 17

4k = 8

k = 2

Hence, the value of k is 2.

#SPJ2

Similar questions