Math, asked by nikkityagi779, 9 months ago

if alpha,beta are the zeroes of quadratic polynomial p(x)=x^2-5x+6. find a quadratic polynomial whose roots are alpha-1/alpha+1,beta-1/beta+1 .. please answer me..​

Answers

Answered by Anonymous
11

 \large\bf\underline{Given:-}

  • Quadratic polynomial :- x² - 5x + 6

 \large\bf\underline {To \: find:-}

  • Quadratic polynomial whose roots are :- α- 1/α + 1 , β - 1/β +1

 \huge\bf\underline{Solution:-}

  • p(x) = x² - 5x + 6

↣ x² - 5x + 6

↣ x² - 3x - 2x + 6

↣ x(x - 3) -2(x - 3)

↣ (x - 2)(x -3)

↣ x = 2 or x = 3

  • Let α = 2 and β = 3

Now , finding value of α- 1/α + 1 and β - 1/β +1

 \dashrightarrow \tt \:  \frac{ \alpha  - 1}{ \alpha  + 1}  \\  \\  \tt \: putting \: value \: of \:  \alpha  = 2 \\  \\  \dashrightarrow \tt \:  \frac{2 - 1}{2 + 1}  \\  \\  \dashrightarrow \tt \:  \frac{1}{3}

Now,

 \dashrightarrow \tt \:  \frac{ \beta  - 1}{ \beta  + 1}    \\  \\ \tt \:putting \: value \: of  \: \beta  = 3 \\  \\  \dashrightarrow \tt \:  \frac{3 - 1}{3 + 1}  \\  \\  \dashrightarrow \tt \:  \cancel \dfrac{2}{4}  \\  \\  \dashrightarrow \tt \:  \frac{1}{2}

Now,

Roots of required polynomial are 1/3 and 1/2

≫Sum of zeroes = 1/3 + 1/2

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ = (2+3)/6

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ = 5/6

≫ Product of zeroes = ⅓× ½

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀ = 1/6

Required polynomial

= x² -(sum of zeroes)x + product of zeroes

= x² -(⅚)x + 1/6

= x² - 5x/6 + 1/6

= 6x² - 5x + 1 = 0

Hence,

▶️ Required polynomial is 6x² - 5x + 1.

\rule{200}3

Answered by Anonymous
76

\sf\large{\underline{\red{Question:-}}}

if alpha,beta are the zeroes of quadratic polynomial p(x)=x^2-5x+6. find a quadratic polynomial whose roots are alpha-1/alpha+1,beta-1/beta+1.

\sf\large{\underline{\red{Given:-}}}

  • Quadratic polynomial = \sf x^3-5x+6
  • Roots are = \sf \alpha, \beta

\sf\large{\underline{\red{To\:Find:-}}}

  • \sf \large\frac{\alpha-1}{\alpha+1}, \frac{\beta-1}{\beta+1}=?

\sf\large{\red{\underline{Solution:-}}}

➡️ By splitting method.

\sf→ x^2-5x+6=0\\\sf→ x^2-3x-2x+6=0\\\sf→ x(x-3)-2(x-3)=0\\\sf→ (x-3)(x-2)=0\\\sf→ x-3=0, x-2=0\\\sf→ x=3\: and\: x=2

Here,

\sf{\fbox{\red{\alpha=3 \:and\: \beta=2}}}

\sf→ \frac{\alpha-1}{\alpha+1}=\frac{3-1}{3+1} \\\sf{\fbox{\red{\alpha}= \frac{1}{2}}}

\sf→\frac{\beta-1}{\beta+1}= \frac{2-1}{2+1}\\\sf→{\fbox{\red{\beta}=\frac{1}{3}}}

Now,

we know the sum of zeroes = \sf \alpha+\beta

\sf→ \alpha+\beta=\frac{1}{2}+\frac{1}{3}\\\sf→ \alpha+\beta=\frac{3+2}{6}\\\sf→\alpha+\beta= \frac{5}{6}

Product of the zeroes = \sf \alpha\beta

\sf →\alpha\beta= \frac{1}{2}×\frac{3}{2}\\\sf→ \alpha\beta=\frac{1}{6}

Hence,

Required polynomial ↓

\sf→ x^2-(\alpha+\beta)x+(\alpha\beta)\\\sf→ x^2-\frac{5}{6}x+\frac{1}{6}\\\sf→ \frac{x^2-5+1}{6}\\\sf→6x^2-5x+1

\sf{\red{\fbox{\underline{\underline{\blue{\star\:\: 6x^2-5x+1}}}}}}

Similar questions