Math, asked by toxicgaming9948, 2 months ago

if alpha beta are zeroes of polynomial x²-4x-12 then find 1/alpha + 1/beta -2ab​

Answers

Answered by amansharma264
16

EXPLANATION.

α and β are zeroes of the polynomial.

⇒ x² - 4x - 12 = 0.

As we know that,

Sum of the zeroes of the quadratic equation.

⇒ α + β = -b/a.

⇒ α + β = -(-4)/1 = 4.

Products of the zeroes of the quadratic equation.

⇒ αβ = c/a.

⇒ αβ = (-12)/1 = -12.

To find : 1/α + 1/β - 2αβ.

Taking L.C.M. in this equation, we get.

⇒ β + α - 2αβ(αβ)/αβ.

⇒ α + β - 2(αβ)²/αβ.

Put the values of the equation, we get.

⇒ 4 - 2(-12)²/-12.

⇒ 4 - 2(144)/-12.

⇒ 4 - 288/-12.

⇒ -284/-12.

⇒ 71/3.

⇒ 1/α + 1/β - 2αβ = 71/3.

                                                                                                                         

MORE INFORMATION.

Conjugate roots.

If D < 0.

One roots = α + iβ.

Other roots = α - iβ.

If D > 0.

One roots = α + √β.

Other roots = α - √β.

Answered by abhishek917211
6

α and β are the zeroes of the polynomial x² + 4x + 3.

So,

Sum of zeroes :

α + β = -b/a

⇒ α + β = -4

Product of zeroes:

αβ = c/a

⇒ αβ = 3

Now,

★Sum of zeroes :

1 + β/α + 1 + α/β

⇒ αβ + β² + αβ + α² / αβ

⇒ α² + β² + 2αβ / αβ

We know that,

α² + β² + 2αβ = ( α + β )²

⇒ ( α + β )² / αβ

Putting the values

⇒ ( - 4 )² / 3

⇒ 16 / 3

★ Product of zeroes:

1 + β/α × 1 + α/β

⇒ 1 + α/β + β/α + αβ/αβ

⇒ 2αβ + α² + β² / αβ

⇒ ( α + β )² / αβ

Putting the values

⇒ ( - 4 )² / 3

⇒ 16 / 3

But required polynomial is:

x² - ( Sum of the zeroes ) x + Product the zeroes

⇒ x² - 16/3 x + 16/3

If k = 3

⇒ 3 ( x² - 16/3 x + 16/3 )

⇒ 3x² - 16x + 16

Similar questions