Math, asked by b191308, 6 months ago

if alpha,beta,gamma are the roots of equation x³+px²+qx+r=0 then sigma alpha²(beta+gama)​

Answers

Answered by Anonymous
5

Swipe Left for full answer

\alpha , \beta\:and\:\gamma are the roots of equation {x}^{3}+p{x}^{2}+qx+r=0

Sum of roots taken one at a time=

\sum\alpha=\alpha+\beta+\gamma=-p

Sum of the roots taken two at a time =

\sum\alpha\beta=\alpha\beta+\beta\gamma+\alpha\gamma=q

Product of the roots= −r

\sum{ \alpha }^{3}  { \beta }^{3} = {( \alpha  \beta )}^{3}  +  {( \beta  \gamma )}^{3}  +  {( \alpha  \gamma) }^{3}

we know that,

{a}^{3}   + {b}^{3}  +  {c}^{3}  = (a +  b + c)( {a}^{2}  +  {b}^{2}  +  {c}^{2})  - (ab + bc +  ca) + 3abc

 { (\alpha  \beta) }^{3}  +  { (\beta  \gamma )}^{3}  +  { (\alpha  \gamma) }^{3}  = ( \alpha  \beta +   \beta  \gamma +   \alpha  \gamma ) \huge{(}  \small  { (\alpha  \beta )}^{2} +   {( \beta  \gamma )}^{2}   + {( \alpha  \gamma )}^{2}   - ( { \alpha  \beta }^{2} \gamma  +   { \beta  \gamma }^{2}  \alpha  +  { \alpha \gamma  }^{2} \beta  ) \huge) \small + 3( \alpha  \beta )( \beta  \gamma )( \gamma  \alpha ) \\  \\  =q \huge( \small {( \alpha  \beta  +  \beta  \gamma  +  \gamma  \alpha) }^{2}  - 2 { \alpha  \beta }^{2} \gamma   - 2 { \beta  \gamma }^{2}  \alpha   - 2{ \gamma  \alpha }^{2}  \beta  -   { \alpha  \beta }^{2}  \gamma  -   { \beta  \gamma }^{2}  \alpha  -  { \gamma  \alpha }^{2}  \beta  \huge) \small + 3{( \alpha  \beta  \gamma )}^{2}  \\  \\  = (q)( {q} ^{2}  - 3 \alpha  \beta  \gamma ( \alpha +   \beta +   \gamma )) + 3 {r}^{2}  \\  \\  = (q)( {q}^{2}  + 3rp) + 3 {r}^{2}  \\  \\  =  {q}^{3}  + 3pqr + 3 {r}^{2}

Answered by Anonymous
8

Step-by-step explanation:

Upar wala answer will help u.........

Similar questions