Math, asked by indianosr, 10 months ago


If alpha, Beta, gamma are the zeroes of the
cubic polynomial p of x = x^2- 5x-1
Then find the value of alpha beta square + alpha square beta​

Answers

Answered by BrainlyConqueror0901
49

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{\alpha\beta^{2}+\alpha^{2}\beta=-5}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given: }} \\  \tt:  \implies p(x) =  {x}^{2}  - 5x - 1 \\  \\  \tt: \implies  \alpha  \: and \:  \beta  \: are \: the \: zeroes\\  \\  \red{\underline \bold{To \: Find: }} \\ \tt:   \implies   \alpha  { \beta }^{2}  +  { \alpha }^{2}  \beta  = ?

• According to given question :

 \tt \circ \:  {x}^{2} - 5x - 1 = 0 \\  \\  \tt \circ \: a = 1 \\  \\ \tt \circ \: b =  - 5 \\   \\  \tt \circ \: c =  - 1   \\  \\  \bold{For \: Sum \: of \: zeroes} \\  \tt:  \implies  \alpha  +  \beta  =  \frac{ - b}{a}  \\  \\ \tt:  \implies  \alpha  +  \beta  = \frac{ - ( - 5)}{1}  \\  \\ \green{\tt:  \implies  \alpha  +  \beta  =5} \\  \\   \bold{For \: Product \: of \: zeroes} \\ \tt:  \implies  \alpha\beta  = \frac{c}{a}  \\  \\ \tt:  \implies  \alpha \beta  = \frac{ - 1}{1}  \\  \\  \green{\tt:  \implies  \alpha \beta  = - 1} \\  \\  \bold{For \: finding \: zeroes} \\ \tt:  \implies  \alpha { \beta }^{2}  +   { \alpha }^{2} \beta  \\  \\  \tt:  \implies  \alpha  \beta  ( \beta  +  \alpha ) \\  \\ \tt:  \implies   - 1(5) \\  \\  \green{\tt:  \implies  - 5} \\  \\   \green{\tt \therefore  \alpha  { \beta }^{2}  +  { \alpha }^{2}  \beta  =  - 5}

Answered by Anonymous
49

AnswEr :

Explanation :

The given polynomial is p(x) = x² - 5x - 1.

We have to find the value of \alpha \beta^2 + \alpha^2 \beta

NoTE

The relations between the zeros and the coefficients for a quadratic polynomial are given as :

Consider a polynomial ax² + bx + c

  • Sum of Zeros : - b/a

  • Product of Zeros : c/a

Here,

Sum of Zeros

 \sf \:  \alpha  +  \beta  =  - ( - 5) = 5

Product of Zeros

 \sf \:  \alpha  \beta  =  - 1

Now,

 \alpha  \beta  {}^{2}  +  { \alpha }^{2}  \beta  \\  \\  \longrightarrow \:  \alpha  \beta ( \alpha  +  \beta ) \\  \\  \longrightarrow \:  \sf \: ( - 1)( 5) \\  \\  \longrightarrow \sf \: - 5

Thus,the value of \alpha \beta^2 + \alpha^2 \beta is - 5

Similar questions