if alpha + beta = pi/4, then the value of (1+tanalpha)(1+tanbeta)
Answers
Answered by
1
Answer:
tan(α+β)=tan4π
⟹1−tanαtanβtanα+tanβ=1
⟹tanα+tanβ+tanαtanβ=1
⟹1+tanα+tanβ+tanαtanβ=2
⟹(1+tanα)(1+tanβ)=2
Similar questions