Math, asked by arpitrajput202, 4 days ago

if alpha , bita are the roots of quadratic equation ax^2+bx+c = 0 , then write alpha^5+bita^5 in terms of a, b, c

Answers

Answered by MysticSohamS
1

Answer:

hey here is your solution

pls mark it as brainliest

Step-by-step explanation:

to \: find =  \\  \alpha  {}^{5}  +  \beta  {}^{5}  \\  \\ so \: given \: quadratic \: equation \: is \\ ax {}^{2}  + bx + c = 0   \\ \\ let \: its \: two \: roots \: be \:  \alpha  \: and \:  \beta  \\ we \: know \: that \\  \\  \alpha  +  \beta  =  \frac{ - b}{a}  \:  \:  \:  \:  \:  \:  \: (1) \\  \\  \alpha  \beta  =  \frac{c}{a}    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:   (2) \\  \\ applying \: now  \:  \:  (2) {}^{2}  \\  \\ we \: get \\  \\  \alpha  {}^{2}  \beta  {}^{2}  =  \frac{c {}^{2} }{a {}^{2} }

so \:we \: know \: that \\  \alpha  {}^{2} +  \beta  {}^{2}   = ( \alpha  +  \beta ) {}^{2}  - 2 \alpha  \beta  \\  \\  = ( \frac{ - b}{a}  \: ) {}^{2}  - 2  \times \frac{c}{a} \:  \:  \:  \:  \:  \: from \: (1) \: and \: (2)  \\  \\   =  \frac{b {}^{2} }{a {}^{2} }  -  \frac{2c}{a}  \:  \:  \:  \:  \:  \:  \: (4)

similarly \\  \alpha  {}^{3}  +  \beta  {}^{3}  = ( \alpha  +  \beta ) {}^{3}  - 3 \alpha  \beta ( \alpha  +  \beta ) \\  \\  = ( \frac{ - b}{a} ) {}^{3}  - 3 \times  \frac{c}{a}  \times ( \frac{ - b}{a} ) \\  \\  =   \frac{ - b {}^{3} }{a {}^{3} }  +  \frac{3bc}{a {}^{2} }   \:  \:  \:  \:  \:  \: (5)\\

so \: here \\  \alpha  {}^{5}  +  \beta  {}^{5}  = ( \alpha  {}^{3}  +  \beta  {}^{3} )( \alpha  {}^{2}  +  \beta  {}^{2} ) -  \alpha  {}^{2}  \beta  {}^{2} ( \alpha  +  \beta )   \\ \\ from \: (1) \: , \: (2) \: , \: (3),(4) \: and \: (5)\\ we \: get \\  \\  = ( \frac{ - b {}^{3} }{a {}^{3} } +  \frac{3bc}{a {}^{2} }  )( \frac{b {}^{2} }{a {}^{2} }  -  \frac{2c}{a} ) -  \frac{c {}^{2} }{a {}^{2} } (  \frac{ - b}{a} ) \\  \\  =  \frac{ - b {}^{5} }{a {}^{5} }  +  \frac{3b {}^{3} c}{a {}^{3} }  \:   +  \frac{2b {}^{3}c }{a {}^{4} } \:    -   \frac{3bc {}^{2} }{a {}^{3} }   +  \frac{bc {}^{2} }{a {}^{3} }  \\  \\    \\  =  \frac{ - b {}^{5} }{a {}^{5} }  +  \frac{3b {}^{3}c }{a {}^{3} }  +  \frac{2b {}^{3} c}{a {}^{4} }  -  \frac{2bc {}^{2} }{a {}^{3} }

Similar questions