Math, asked by arpitrajput202, 1 month ago

if alpha , bita are the roots of quadratic equation ax^2+bx+c = 0 , then write alpha^5+bita^5 in terms of a, b, c​

Answers

Answered by moonsarkar947
1

Answer:

Alpha⁵ + bita⁵ in terms of A,B,C

Step-by-step explanation:

Let us sort out one thing:

 \alpha  {}^{2}  +  { \beta }^{2}  = ( { \alpha  +  \beta )}^{2}  - 2 \alpha  \beta  =  {(  \frac{ - b}{a}) }^{2}  - 2 \frac{c}{a}  =  \frac{ {b}^{2} - 2ac }{ {a}^{2} }

Having established this,

Using Factorisation,

 { \alpha }^{5}  +  { \beta }^{5}  = ( \alpha  +  \beta )( { \alpha }^{4}  -  \alpha  {}^{3}  \beta  +  { \alpha  {}^{2} }^{}  { \beta }^{2}  -  { \alpha  \beta } {}^{3}  +  { \beta }^{4}

Now grouping the term of second bracket we get,

( { \alpha }^{4}  -  { \alpha }^{3}  \beta  +  { \alpha }^{2}  { \beta }^{2}  -  { \alpha  \beta }^{3}  +  { \beta }^{4}  =

( { \alpha }^{4}  +  { \beta }^{4}  + 2 { \alpha }^{2}   { \beta }^{2} ) -  { \alpha }^{2}   { \beta }^{2}  -  \alpha  \beta ( { \alpha }^{2}  +  { \beta }^{2} )

Using the first established equation, the second bracket reduce to,

( \frac{ {b}^{2} - 2ac }{ {a}^{2} } ) {}^{2}  -   (\frac{c}{a} ) {}^{2}  -  \frac{c}{a}  \: . \: ( \frac{ {b}^{2} - 2ac }{ {a}^{2} } ) =   \frac{  {b}^{4}  + 5a {}^{2}  {c - 5ab {}^{2} }c}{ {a}^{4} }

Putting this value in place of the 2nd bracket, we get,

 { \alpha }^{5}  +  { \beta }^{5}  = ( \alpha  +  \beta ) \: . \frac{ {b}^{4}  + 5 {a}^{2} {c - 5 {ab}^{2} }c  }{ {a}^{4} }

 \frac{ - b}{a}  \: . \:  \frac{ {b}^{4} + 5 {a}^{2}  {c}^{2}  - 5 {ab}^{2}c  }{ {a}^{4} }

 =  \frac{ - b( {b}^{4} +  {5a}^{2} {c}^{2} -  {5ab}^{2} c)   }{ {a}^{5} }

Similar questions