Math, asked by hardikt, 9 months ago

If alpha, bita are zeroes of polynomial x2+x+1, then find 1/apha+1/bita =?

Answers

Answered by BrainlyConqueror0901
70

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{\frac{1}{\alpha}+\frac{1}{\beta}=-1}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies  {x}^{2}  + x + 1 = 0 \\  \\  \tt:  \implies  \alpha  \: and \:  \beta  \: are \: zeroes \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies  \frac{1}{ \alpha  }  +  \frac{1}{ \beta }  = ?

• According to given question :

 \tt \circ \:  {x}^{2}   + x + 1 = 0 \\  \\  \tt \circ \: a = 1  \:  \:  \:  \:  \:   \:  \: b = 1  \:  \:  \:  \:  \:  \:  \: c = 1\\  \\  \bold{For \: sum \: of \: zeroes} \\  \tt:  \implies  \alpha  +  \beta  =   - \frac{b}{a}  \\  \\ \tt:  \implies  \alpha  +  \beta  = \frac{ - 1}{1}  \\  \\  \green{\tt:  \implies  \alpha  +  \beta  = - 1 }\\  \\  \bold{For \: product \: of \: zeroes} \\ \tt:  \implies  \alpha \beta  = \frac{c}{a}  \\  \\ \tt:  \implies  \alpha \beta  = \frac{1}{1}  \\  \\  \green{\tt:  \implies  \alpha  \beta  =1} \\  \\   \bold{For \: finding \: value} \\  \tt:  \implies  \frac{1}{ \alpha } +  \frac{1}{ \beta } \\  \\  \tt:  \implies \frac{ \beta  +   \alpha }{ \alpha  \beta }  \\  \\ \tt:  \implies  \frac{ - 1}{1}  \\  \\  \green{\tt:  \implies  - 1} \\  \\   \green{\tt \therefore  \frac{1}{ \alpha }  +  \frac{1}{ \beta }  =  - 1}

Answered by AdorableMe
132

Given :-

α and β are the zeros of the polynomial x² + x + 1.

To find :-

\displaystyle{\sf{\frac{1}{\alpha } +\frac{1}{\beta } }}

Solution :-

We know, the sum of the zeros of a quadratic polynomial :

α + β = -b/a

⇒α + β = -1/1 = -1

And, the product of the zeros of a quadratic polynomial :

αβ = c/a

⇒αβ = 1/1 = 1

Now,

\displaystyle{\sf{\frac{1}{\alpha } +\frac{1}{\beta } }}\\\\\\\displaystyle{\sf{=\frac{\beta +\alpha }{\alpha \beta } }}\\\\\\\displaystyle{\sf{=\frac{-1}{1} }}

Thus, \boxed{\displaystyle{\sf{\frac{1}{\alpha } +\frac{1}{\beta }=-1 }}}.

Similar questions