Math, asked by siddiquajuweriya68, 1 day ago

if am=n and an=m then ap+m+n-p (prove) ​

Answers

Answered by mathdude500
6

Appropriate Question :-

In an AP,  \rm a_m = n \: and\: a_n = m,  prove that  \rm a_p = m + n - p

\large\underline{\sf{Solution-}}

Let assume that

  • First term of an AP = a

  • Common difference of an AP = d

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an arithmetic progression is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the progression.

  • n is the no. of terms.

  • d is the common difference.

Tʜᴜs, According to statement,

\rm \: a_m \:  =  \: n \\

\rm\implies \:\rm \: a + (m - 1)d \:  =  \: n  -  -  - (1)\\

And

\rm \: a_n = m \\

\rm\implies \:a + (n - 1)d \:  =  \: m \:  -  - -  (2) \\

On Subtracting equation (2) from equation (1), we get

\rm \: (m - 1)d - (n - 1)d = n - m \\

\rm \: md -d - nd  + d = n - m \\

\rm \: (m - n)d =  - ( m - n) \\

\bf\implies \:d \:  =  \:  -  \: 1 \\

On substituting the value of d in equation (1), we get

\rm \: a + (m - 1)( - 1) = n \\

\rm \: a - m  +  1 = n \\

\bf\implies \:a \:  =  \: n + m - 1 \\

Now, Consider

\rm \: a_p \\

\rm \:  =  \: a + (p - 1)d \\

On substituting the values of a and d, we get

\rm \:  =  \: n + m - 1 + (p - 1)( - 1) \\

\rm \:  =  \: n + m - 1 - p  + 1 \\

\rm \:  =  \: n + m - p  \\

Hence,

\rm\implies \:\boxed{ \rm{ \:\rm \: a_p =  \: n + m - p   \:  \: }}\\

\rule{190pt}{2pt}

Additional Information :-

↝ Sum of n  terms of an arithmetic progression is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • Sₙ is the sum of n terms of AP.

  • a is the first term of the progression.

  • n is the no. of terms.

  • d is the common difference.

Similar questions