if an = 4, d=2,sn=-14 find the value of n and a
Answers
an=a+(n-1)d=4
or, a+(n-1)2=4
or, a+2n-2=4
or, a+2n=4+2
or, a+2n=6
or, a=6-2n
=n/2[2a+(n-1)d]=-14
or, n/2[2a+(n-1)2]=-14
or, an+n(n-1)=-14
or, (6-2n)n+n²-n=-14
or, 6n-2n²+n²-n=-14
or, -n²+5n=-14
or, n²-5n=14
or, n²-5n-14=0
or, n²-7n+2n-14=0
or, n(n-7)+2(n-7)=0
or, (n-7)(n+2)=0
either, n-7=0
or, n=7
or, n+2=0
or, n=-2
∵, n can not be negative ;
∴, n=7
∴, a=6-(2×7)
=6-14
=-8
∴, n=7 and a=-8 Ans.
GIVEN : an = 4 d = 2, Sn = - 14
FIND : Value of n and a.
SOLUTION :
We know that..
an = a + (n - 1)d
Put the known values in above formula to find the value of n.
=> 4 = a + (n - 1)2
=> 4 = a + 2n - 2
=> 4 + 2 = a + 2n
=> 6 = a + 2n
=> 6 - 2n = a _________ (eq 1)
Now..
Sn = n/2 (a + an)
Put the known values in above formula
=> - 14 = n/2 [(6 - 2n) + 4]
=> - 14 = n/2 (6 - 2n + 4)
=> - 14 = n/2 (10 - 2n)
=> -14(2) = n(10 - 2n)
=> - 28 = 10n - 2n²
=> 2n² - 10n - 28 = 0
Take 2 common from L.H.S.
=> 2(n² - 5n - 14) = 0
=> n² - 5n - 14 = 0
The above equation is in the form ax² + bx + c and is equal to 0.
i.e.
ax² + bx + c = 0
Now, we have to find a integer whose sum is "b" i.e. (-5) and product is "c" i.e. (-14)
=> n² - 5n - 14 = 0
=> n² - 7n + 2n - 14 = 0
=> n(n - 7) +2(n - 7) = 0
=> (n - 7) (n + 2) = 0
=> n = 7, n = -2 (Neglected)
Put value of n in (eq 1)
=> 6 - 2(7) = a
=> 6 - 14 = a
=> a = - 8
Answer :-