Math, asked by kikialex504, 10 months ago

If an Ap whose first term is -27,the tenth term is equal to the sum of the first nine terms calculate the common difference.

Answers

Answered by mddilshad11ab
53

\sf\large\underline{Given:}

  • \sf{The\:1st\:term\:of\:AP=-27}
  • \sf{The\:10th\: term=The\:sum\:of\:1st\:9th\:term}

\sf\large\underline{To\: Find:}

  • \sf{The\:common\: difference\:of\:AP}

\sf\large\underline{Let:}

  • \sf{The\:common\: difference\:of\:AP=d}

\sf\large\underline{Solution:}

\sf\large\underline{Formula\: used:}

\rm{\implies T_n=a+(n-1)d}

\rm{\implies S_n=\dfrac{n}{2}[2a+(n-1)d]}

  • [As per above information:-]

\rm{\implies T_{10}=-27+(10-1)d}

\rm{\implies T_{10}=-27+9d}

\rm{\implies S_9=\dfrac{9}{2}[2*(-27)+(9-1)d]}

\rm{\implies S_9=\dfrac{9}{2}[-54+8d]}

  • [Now, solving T_10=S_9 here]

\rm\purple{\implies T_{10}=S_9}

\rm{\implies -27+9d=\dfrac{9}{2}[-54+8d]}

\rm{\implies -27+9d=\dfrac{9*(-54)}{2}+\dfrac{9*8d}{2}}

\rm{\implies -27+9d=\dfrac{-486}{2}+\dfrac{72d}{2}}

\rm{\implies -27+\dfrac{486}{2}=\dfrac{72d}{2}-9d}

\rm{\implies -27+243=\dfrac{72d-18d}{2}}

\rm{\implies 216=\dfrac{54d}{2}}

\rm{\implies 54d=216*2}

\rm{\implies \cancel{54}d=\cancel{432}}

\rm\red{\implies d=8}

Hence,

\rm\orange{\implies The\: common\:difference\:of\:AP=8}

Answered by nigaranjum18
5

If an Ap whose first term is -27,the tenth term is equal to the sum of the first nine terms calculate the common difference.

Given

  • First termA=-27
  • T-10=S-9

Let:-

  • Common difference be d

by solving upon we get

  • the common difference is 8

I hope it helps you please mark my answer brainlist

Similar questions