Math, asked by Tonyferguson, 11 months ago

If an isosceles triangle has base b and equal sides a, then its area will be

Answers

Answered by mysticd
0

\underline {\blue {Given :}}

 ABC \:is \:an \: isosceles \: triangle.

 AB = AC = a , \:and \: BC = b

\underline {\blue {Construction :}}

 Draw \: AD \: perpendicular \:to \: BC

\underline {\blue {Solution:}}

 In \: \triangle ABD , \\</p><p>\angle {ADB} = 90\degree ,\\BD = \frac{BC}{2} = \frac{b}{2} \: ( Altitude \:bisects \: base )

 AB^{2} = BD^{2} + AD^{2} \\(By \: Pythagoras \: theorem )

 \implies a^{2} = \big(\frac{b}{2}\big)^{2} + h^{2}

 \implies h^{2} = a^{2} - \big(\frac{b}{2}\big)^{2}

 \implies h^{2} = \frac{(4a^{2} - b^{2})}{4}

 \implies h = \sqrt{\frac{(4a^{2} - b^{2})}{4}}

 \implies h = \frac{\sqrt{(4a^{2} - b^{2})}}{2}

 \red { Area \: of \:\triangle ABC} = \frac{1}{2} \times base \times corresponding \:height\\= \frac{1}{2} \times BC \times AD

 = \frac{1}{2} \times b \times \frac{\sqrt{(4a^{2} - b^{2})}}{2}[From \:(1) ]

 = \frac{b\sqrt{(4a^{2} - b^{2})}}{4}

Therefore.,

 \red { Area \: of \:\triangle ABC}

 \green { = \frac{b\sqrt{(4a^{2} - b^{2})}}{4}}

•••♪

Attachments:
Similar questions