Math, asked by nk9645469898, 8 months ago

If α and β are the roots of quadratic equation x2+5x+a = 0 and
2 α+5β= -1 then a is equal to

Answers

Answered by BrainlyPopularman
5

GIVEN :

A quadratic equation x² + 5x + a = 0 have two roots α and β.

Relation in roots is 2α + 5β = -1 .

TO FIND :

• Value of 'a' = ?

SOLUTION :

• Let's find roots of quadratic equation –

 \\  \implies{ \bold{ {x}^{2} + 5x + a = 0 }} \\

• We know that –

 \\   \to \:  \:  \:  \: { \bold{ x =  \dfrac{ - b \pm \sqrt{ {b}^{2}  - 4ac} }{2a}  }} \\

• So that –

 \\   \implies \: { \bold{ x =  \dfrac{ - (5) \pm \sqrt{ {5}^{2}  - 4(1)a} }{2(1)}  }} \\

 \\   \implies \: { \bold{ x =  \dfrac{ - 5 \pm \sqrt{ 25  - 4a} }{2}  }} \\

• Then roots –

 \\   \implies \: { \bold{  \alpha  =  \dfrac{ - 5  + \sqrt{ 25  - 4a} }{2}  \:  \: , \:  \:  \beta  =  \dfrac{ - 5 -  \sqrt{25 - 4a} }{2}  }} \\

• Now According to the given condition –

 \\   \implies \: { \bold{ 2 \alpha + 5 \beta  =  - 1}} \\

• Put the values of α and β

 \\   \implies \: { \bold{ 2  \left(  \frac{ - 5 +  \sqrt{25 - 4a}  }{2} \right) + 5  \left(  \frac{ - 5  -   \sqrt{25 - 4a}  }{2} \right)   =  - 1}} \\

 \\   \implies \: { \bold{ 2  \left(  \frac{ - 5 +  \sqrt{25 - 4a}  }{2} +  \frac{ - 5  -   \sqrt{25 - 4a}  }{2}  \right) + 3  \left(  \frac{ - 5  -   \sqrt{25 - 4a}  }{2} \right)   =  - 1}} \\

 \\   \implies \: { \bold{ 2  \left(  \frac{ - 5 }{2} +  \frac{ - 5 }{2}  \right) + 3  \left(  \frac{ - 5  -   \sqrt{25 - 4a}  }{2} \right)   =  - 1}} \\

 \\   \implies \: { \bold{  \cancel2  \left(  \frac{ - 10 }{ \cancel2}  \right) + 3  \left(  \frac{ - 5  -   \sqrt{25 - 4a}  }{2} \right)   =  - 1}} \\

 \\   \implies \: { \bold{   - 10+ 3  \left(  \frac{ - 5  -   \sqrt{25 - 4a}  }{2} \right)   =  - 1}} \\

 \\   \implies \: { \bold{   3  \left(  \frac{ - 5  -   \sqrt{25 - 4a}  }{2} \right)   = 10 - 1}} \\

 \\   \implies \: { \bold{    \cancel3  \left(  \frac{ - 5  -   \sqrt{25 - 4a}  }{2} \right)   = \cancel 9}} \\

 \\   \implies \: { \bold{  \left(  \frac{ - 5  -   \sqrt{25 - 4a}  }{2} \right)   = 3}} \\

 \\   \implies \: { \bold{  { - 5  -   \sqrt{25 - 4a}  }   = 6}} \\

 \\   \implies \: { \bold{  {   -   \sqrt{25 - 4a}  }   = 6 + 5}} \\

 \\   \implies \: { \bold{  {   -   \sqrt{25 - 4a}  }   = 11}} \\

• Square on both side –

 \\   \implies \: { \bold{  {   (-   \sqrt{25 - 4a} \: ) {}^{2}   }   = (11)^{2} }} \\

 \\   \implies \: { \bold{  25 - 4a   = 121 }} \\

 \\   \implies \: { \bold{   - 4a   = 121 - 25 }} \\

 \\   \implies \: { \bold{  4a   = - 96 }} \\

 \\   \implies \: { \bold{  a   = - \cancel \dfrac{96}{4}  }} \\

 \\   \implies \: { \bold{  a   = -24 }} \\

Hence , Value of a is -24 .

Similar questions