Math, asked by drakejohnson2394, 1 year ago

If α and β are the roots of the equation 2x-7x+3=0, find the quadratic equation whose roots are α2 and β2.

Answers

Answered by suraniparvin
1
See the attach file for ur ans
Attachments:
Answered by silentlover45
14

\underline\mathfrak{Given:-}

  • \: \: \: \: \: \: \: p \: {(x)} \: \: \leadsto  \: \: {2x}^{2} \: - \: {7x} \: + \: {3}

\underline\mathfrak{To \: \: Find:-}

  • \: \: \: \: \: Value \: \: of \: \: {\alpha}^{2} \: + \: {\beta}^{2}?

\underline\mathfrak{Solutions:-}

  • \: \: \: \: \: \: \: p \: {(x)} \: \: \leadsto  \: \: {2x}^{2} \: - \: {7x} \: + \: {3}

\: \: \: \: \: \leadsto {a} \: \: = \: \: {2}

\: \: \: \: \: \leadsto {b} \: \: = \: \: {-7}

\: \: \: \: \: \leadsto {c} \: \: = \: \: {3}

  • \: \: \: \: \: {Let \: \: \alpha \: \: and \: \: \beta \: \: are \: \: the \: \: zeroes \: \: of \: \: the \: \: given \: \: polynomial}

  • \: \: \: \: \: {\alpha} \: + \: {\beta} \: \: = \: \: \dfrac{-b}{a}

\: \: \: \: \: \: \: \leadsto  \: \: \frac{-(-7)}{2}

\: \: \: \: \: \: \: \leadsto  \: \: \frac{7}{2}

  • \: \: \: \: \: {\alpha\beta} \: \: = \: \: \dfrac{c}{a}

\: \: \: \: \: \leadsto {\alpha\beta} \: \: = \: \: \dfrac{3}{2}

  • \: \: \: \: \: {({\alpha} \: + \: {\beta})}^{2} \: \: \leadsto \: \: {\alpha}^{2} \: + \: {\beta}^{2} \: + \: {{2}\alpha\beta}

\: \: \: \: \: \leadsto {({\alpha} \: + \: {\beta})}^{2} \: + \: {{2}\alpha\beta}

  • \: \: \: \: \: put \: \: the \: \: of \: \: {\alpha} \: + \: {\beta} \: \: and \: \: {\alpha\beta}

\: \: \: \: \: \leadsto {(\dfrac{7}{2})}^{2} \: - \: {{2} \: \times \: \frac{3}{2}}

\: \: \: \: \: \leadsto {\dfrac{49}{4} \: - \: \frac{3}{1}}

\: \: \: \: \: \leadsto {\dfrac{{49} \: - \: {12}}{4}}

\: \: \: \: \: \leadsto {\dfrac{37}{4}}

  • \: \: \: \: \: So, \: \: Value \: \: of \: \: {\alpha}^{2} \: + \: {\beta}^{2} \: \: is \: \: \dfrac{{49} \: - \: {12}}{4}

\: \: \: \: \: {x}^{2} \: - \: {(\alpha \: + \: \beta)} \: x \: + \: \alpha\beta

\: \: \: \: \: \leadsto \: {x}^{2} \: - \: {({\alpha}^{2} \: + \: {\beta}^{2})} \: x \: + \: {\alpha}^{2}{\beta}^{2}

\: \: \: \: \: \leadsto \: {x}^{2} \: - \: {\frac{37x}{4}} \: + \: {(\frac{3}{2})}^{2}

\: \: \: \: \: \leadsto \: {x}^{2} \: - \: {\frac{37x}{4}} \: + \: \frac{9}{4}

\: \: \: \: \: \leadsto \: \frac{{4x}^{2} \: - \: {37x} \: + \: {9}}{4}

\: \: \: \: \: \leadsto \: {4x}^{2} \: - \: {37x} \: + \: {9} \: \: = \: \: {0}

  • \: \: \: \: \: So, \: \: the \: \: quadratic \: \: equation \: \: whose \: \: roots \: \: are \: \: {\alpha}^{2} \: \: and \: \: {\beta}^{2} \: \: is \: \: {4x}^{2} \: - \: {37x} \: + \: {9}

__________________________________

Similar questions