Math, asked by valueeducation2484, 11 months ago

If α and β are the roots of the equation 375x² – 25x – 2 = 0, then
limₙ→[infinity] ⁿ∑ᵣ₌₁ αʳ + limₙ→[infinity] ⁿ∑ᵣ₌₁ βʳ is equal to
(A) 1/12
(B) 29/358
(C) 7/116
(D) 21/346

Answers

Answered by anamkhurshid29
2

Hey dude your answer is

a. 1/2

Hope this helps ❤️

Mark as brainliest ❤️

Answered by chinku89067
2

Option (A) is correct.

Step-by-step explanation:

Given that α and β are the roots of the equation 375x² – 25x – 2 = 0. So,

\alpha +\beta =-\frac{-25}{375}=\frac{1}{15}  and \alpha \beta =\frac{-2}{375}

Now,

\lim_{n\rightarrow \infty }\sum_{r=1}^{n}\alpha ^{r}+\lim_{n\rightarrow \infty }\sum_{r=1}^{n}\beta  ^{r}

=\left (\alpha+\alpha +\alpha ^{2}+....  \right )+\left ( \beta+\beta +\beta ^{2}+.... \right )

The above series are the infinite geometric series, so

\lim_{n\rightarrow \infty }\sum_{r=1}^{n}\alpha ^{r}+\lim_{n\rightarrow \infty }\sum_{r=1}^{n}\beta  ^{r}\\=\frac{\alpha }{1-\alpha }+\frac{\beta }{1-\beta }

=\frac{\alpha }{1-\alpha }+\frac{\beta }{1-\beta }\\=\frac{\alpha -\alpha \beta +\beta -\beta }{1-\left ( \alpha +\beta   \right )+\alpha \beta}

=\frac{\alpha +\beta -2\alpha \beta }{1-\left ( \alpha +\beta  \right )+\alpha \beta }

=\frac{\frac{1}{15}-2\times \frac{-2}{375}}{1-\frac{1}{15}+\frac{-2}{375}}

=\frac{1}{12}

Hence, option (A) is correct.

Similar questions