Math, asked by Anonymous, 3 months ago

if α and β are the roots of the equation 375x² - 25x -2 = 0 then
\displaystyle \lim_{\sf n\to \infty }\sum^{n}_{r=1}\alpha^r + \lim_{\sf n\to \infty }\sum^{n}_{r=1}\beta^r
is equal to

Answers

Answered by shadowsabers03
23

The roots of the equation 375x^2-25x-2=0 are,

\longrightarrow x=\dfrac{25\pm\sqrt{(-25)^2-(4\times375\times(-2))}}{2\times375}

\longrightarrow x=\dfrac{25\pm\sqrt{3625}}{750}

\longrightarrow x=\dfrac{5\pm\sqrt{145}}{150}

So,

  • \alpha=\dfrac{5+\sqrt{145}}{150}
  • \beta=\dfrac{5-\sqrt{145}}{150}

We see |\alpha|<1,\ |\beta|<1 also.

Then,

\displaystyle\longrightarrow\lim_{n\to\infty}\sum_{r=1}^n\alpha^r=\lim_{n\to\infty}\sum_{r=1}^n\left(\dfrac{5+\sqrt{145}}{150}\right)^r

The sum actually represents an infinite geometric series of first term \alpha and common ratio also \alpha.

We have the formula for infinite geometric series, that for |k|<1,

\displaystyle\longrightarrow\lim_{n\to\infty}\sum_{r=1}^nak^{r-1}=\dfrac{a}{1-k}

Here a is first term and k is common ratio.

If a=k then,

\displaystyle\longrightarrow\lim_{n\to\infty}\sum_{r=1}^nk^r=\dfrac{k}{1-k}

Thus,

\displaystyle\longrightarrow\lim_{n\to\infty}\sum_{r=1}^n\alpha^r=\dfrac{\frac{5+\sqrt{145}}{150}}{1-\frac{5+\sqrt{145}}{150}}

\displaystyle\longrightarrow\lim_{n\to\infty}\sum_{r=1}^n\alpha^r=\dfrac{5+\sqrt{145}}{145-\sqrt{145}}

Similarly,

\displaystyle\longrightarrow\lim_{n\to\infty}\sum_{r=1}^n\beta^r=\lim_{n\to\infty}\sum_{r=1}^n\left(\dfrac{5-\sqrt{145}}{150}\right)^r

\displaystyle\longrightarrow\lim_{n\to\infty}\sum_{r=1}^n\beta^r=\dfrac{\frac{5-\sqrt{145}}{150}}{1-\frac{5-\sqrt{145}}{150}}

\displaystyle\longrightarrow\lim_{n\to\infty}\sum_{r=1}^n\beta^r=\dfrac{5-\sqrt{145}}{145+\sqrt{145}}

Now,

\displaystyle\longrightarrow\lim_{n\to\infty}\sum_{r=1}^n\alpha^r+\lim_{n\to\infty}\sum_{r=1}^n\beta^r=\dfrac{5+\sqrt{145}}{145-\sqrt{145}}+\dfrac{5-\sqrt{145}}{145+\sqrt{145}}

\displaystyle\longrightarrow\lim_{n\to\infty}\sum_{r=1}^n\alpha^r+\lim_{n\to\infty}\sum_{r=1}^n\beta^r=\dfrac{2(145\times5+145)}{145^2-145}

\displaystyle\longrightarrow\lim_{n\to\infty}\sum_{r=1}^n\alpha^r+\lim_{n\to\infty}\sum_{r=1}^n\beta^r=\dfrac{2\times145\times6}{145\times144}

\displaystyle\longrightarrow\underline{\underline{\lim_{n\to\infty}\sum_{r=1}^n\alpha^r+\lim_{n\to\infty}\sum_{r=1}^n\beta^r=\dfrac{1}{12}}}

Hence 1/12 is the answer.

Answered by XxMrThunderxX
1

__________________________________

1/12

Similar questions