Math, asked by sreekutty22, 7 months ago

If α and β are the roots of the equation 3x²-6x+1=0 from the equation whose

roots are α²β, β²α.​

Answers

Answered by educrazy10
1

Answer:

  • Gn
  • 3x^{2}  - 6x + 1 = 0
  • Therefore
  •  \alpha  = 6 \div 3 = 2
  •  \beta  = 1 \div 3
  • Now apply the value
  •  \alpha  {}^{2}  \beta  = 4 \times 1 \div 3 = 4 \div 3
  •  \beta  {}^{2}  \alpha  =  < 1 \div 3 >  {}^{2}  \times 2 \\  = 2 \div 9

Answered by Asterinn
8

Given :

  • α and β are the roots of the equation 3x²-6x+1=0

To find :

  • equation whose roots are α²β and β²α

Concept and formula used :

\underline{\boxed{\bf{ sum \: of \: roots =  -  \frac{coefficient \: of \:  {x}}{coefficient \: of \:  {x}^{2} }  }}}

\underline{\boxed{\bf{product \: of \: roots =   \frac{constant \: term}{coefficient \: of \:  {x}^{2} }  }}}

 \sf \: general \: equation \:  \\  \sf \: can \: be \: written \: of \: the \:    \sf \: form \:    :  \\   \sf{x}^{2}  - (sum \: of \: roots)x + (product \: of \: roots)

Solution :

We have :-

 \sf \: 3 {x}^{2}  - 6 + 1 = 0

α and β are roots of above equation.

\sf{ sum \: of \: roots =  \alpha + \beta  =  -  (\dfrac{ - 6}{3 })}

\sf{ sum \: of \: roots =  \alpha + \beta  =  2}

{ \sf{product \: of \: roots =  \alpha  \beta    =    \dfrac{1}{3} }}

 \sf \: Now \: if \:  { \alpha}^{2} \beta \: and \: { \beta}^{2} \alpha \: are \: roots \: \\ \sf then  \:  equation \: will \: be \: of \: form :

 \implies  \sf{x}^{2}  - ({ \alpha}^{2} \beta  +   \alpha{ \beta}^{2})x + ({ \alpha}^{2} \beta  \times \alpha { \beta}^{2}) = 0

\implies  \sf{x}^{2}  -  \alpha\beta({ \alpha}   +   { \beta})x + ({ \alpha}^{3} { \beta}^{3}) = 0

\implies  \sf{x}^{2}  -  \alpha\beta({ \alpha}   +   { \beta})x + {(\beta \alpha)}^{3}  = 0

Now put :-

\alpha + \beta  =  2

\alpha  \beta    =    \dfrac{1}{3}

\implies  \sf{x}^{2}  -   \dfrac{2}{3} x + {( \dfrac{1}{3} )}^{3}  = 0

\implies  \sf{x}^{2}  -   \dfrac{2}{3} x + {\dfrac{1}{27} }  = 0

LCM if 27 and 3 = 27

\implies  \dfrac{ \sf27{x}^{2}  -   18x + 1}{27}   = 0

\implies  { \sf27{x}^{2}  -   18x + 1}   = 0

Answer :

{ \sf27{x}^{2}  -   18x + 1}   = 0

Similar questions