Math, asked by bahesh2006, 3 months ago

If α and β are the zeroes of quadratic polynomial such that 3α -2β = 8 and 2α + 3β = 14, then form the family of polynomials.

Answers

Answered by mathdude500
1

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:3 \alpha - 2\beta = 8 -  -  - (1)

and

\rm :\longmapsto\:2 \alpha  + 3\beta = 14 -   -  - (2)

Multiply equation (1) by 3 and equation (2) by 2, we get

\rm :\longmapsto\:9 \alpha - 6\beta = 24 -  -  - (3)

\rm :\longmapsto\:4 \alpha  + 6\beta = 28 -   -  - (4)

On adding equation (3) and (4), we get

\rm :\longmapsto\:13 \alpha  = 52

\bf\implies \: \alpha  = 4 -  -  - (5)

On substituting the value in equation (2), we get

\rm :\longmapsto\:2 \times 4 + 3 \beta  = 14

\rm :\longmapsto\:8 + 3 \beta  = 14

\rm :\longmapsto\: 3 \beta  = 14 - 8

\rm :\longmapsto\: 3 \beta  = 6

\bf\implies \: \beta  = 2 -  -  - (6)

Now,

Consider,

\rm :\longmapsto\: \alpha + \beta  = 4 + 2 = 6

and

\rm :\longmapsto\: \alpha\beta  = 4 \times 2 = 8

So, required polynomial is given by

\rm :\longmapsto\:f(x) = k\bigg( {x}^{2} - ( \alpha + \beta)x +  \alpha\beta   \bigg) \: where \: k \ne \: 0

\bf :\longmapsto\:f(x) = k\bigg( {x}^{2} - 6x + 8\bigg) \: where \: k \ne \: 0

Additional Information :-

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

 \green{ \boxed{ \bf \: { \alpha }^{2} +  { \beta }^{2} =  {( \alpha +   \beta) }^{2}  - 2 \alpha  \beta\: }}

 \green{ \boxed{ \bf \: { \alpha }^{3} +  { \beta }^{3} =  {( \alpha +   \beta) }^{3}  - 3\alpha  \beta( \alpha+ \beta) \: }}

Similar questions