Math, asked by Rythm14, 1 year ago

If α and β are the zeroes of the polynomial 2x^2 - 3x + 1 form a quadratic polynomial whose zeroes are 3α and 3β ​

Answers

Answered by brunoconti
4

Answer:

Step-by-step explanation:

Attachments:

Rythm14: tyyssmmm
brunoconti: thks man.
Rythm14: girl ._.
Answered by Needthat
2

if \: f(x) \: is \: a \: polynomial \: with \: roots \:  \alpha  \: and \:  \beta  \\  \\ then \: the \: polynomial \: with \: roots \: k \alpha  \: and \: k \beta  \: is \: f( \frac{x}{k} ) = 0 \\  \\

given \\  \\ f(x) = 2 {x}^{2}  - 3x + 1 \\  \\ now \\  \\ f( \frac{x}{3} ) = 0 \\  \\ 2 \frac{ {x}^{2} }{9}  - 3 \times  \frac{x}{3}  + 1 = 0 \\  \\ 2 {x}^{2}  - 9x + 9 = 0

PROOF \\  \\ f(x) =  {x}^{2}  - ( \alpha  +  \beta )x +  \alpha  \beta  = 0 \\  \\ now \\  \\  {x}^{2}  - k( \alpha +   \beta )x +  {k}^{2}  \alpha  \beta  = 0 \\  \\   \frac{ {x}^{2} }{ {k}^{2} }  - ( \alpha   + \beta ) \times  \frac{x}{k}  +  \alpha  \beta  = 0 \\  \\ f( \frac{x}{k} ) = 0

hope it helps


Rythm14: tyssm
Similar questions