Math, asked by nilimanagpure9767, 9 months ago

If α and β are the zeroes of the polynomial ax2 + bx + c, find the value of α2 + β2​

Answers

Answered by Darkrai14
22

Given:-

\rm \alpha \ and \ \beta \ are \ the \ zeroes \ of \ the \ polynomial

 \rm ax^2+bx+c

To find:-

\rm {\alpha}^2 + {\beta}^2

Solution:-

\rm\alpha + \beta = \dfrac{-b}{a}

\rm\alpha\beta=\dfrac{c}{a}

We know that,

\rm{\alpha}^2+\beta ^2 = ( \alpha+\beta)^2 - 2\alpha\beta

\rm\therefore\qquad {\alpha}^2+\beta ^2 = \Bigg ( \dfrac{-b}{a}\Bigg )^2 - 2\Bigg ( \dfrac{c}{a}\Bigg )

\rm\implies {\alpha}^2+\beta ^2 =\dfrac{b^2}{a^2}-  \dfrac{2c}{a}

\rm\implies {\alpha}^2+\beta ^2 =\dfrac{b^2-2ac}{a^2}

Hope it helps...

Similar questions