Math, asked by aswinvinode7, 8 months ago

If α and β are the zeroes of the polynomial x2 + 5x + 8, then the value of α2 + β2 is……………

Answers

Answered by Anonymous
5

\huge\underline{ \mathbb\red{⭐A} \green{n} \mathbb\blue{S} \purple{w} \mathbb \orange{E} \pink{r}} \:

➡️Alpha and beta are zeros of the polynomial f(x)=x^2-5x+k.

➡️let alpha=a &beta=b

➡️a+b=-(-5/1)=5;ab=k/1=k

➡️Now, a-b=1

➡️squaring both sides

➡️(a-b)^2=1

➡️(a+b)^2-4ab=1

➡️25-4k=1

➡️4k=24

➡️k=6.

Answered by Anonymous
8

\Large{\underline{\underline{\mathfrak{\red{\bf{Solution}}}}}}

\Large{\underline{\mathfrak{\orange{\bf{Given}}}}}

  • Equation, x² + 5x + 8 = 0
  • α and β are the zeroes of the polynomial

\Large{\underline{\mathfrak{\orange{\bf{Find}}}}}

  • Value of α² + β²

\Large{\underline{\underline{\mathfrak{\red{\bf{Explanation}}}}}}

Using Formula

\small{\boxed{\tt{\green{\:Sum\:of\:zeroes\:=\:\dfrac{-(coefficient\:of\:x)}{(coefficient\:of\:x^2)}}}}}

\small{\boxed{\tt{\blue{\:product\:of\:zores\:=\:\dfrac{(Constant\:part)}{(coefficient\:of\:x^2)}}}}}

Now,

➡ Sum of zeroes = -(5)/1

➡ α + β = -5 __________(1)

Again,

➡Product of zeroes = 8/1

➡ α . β = 8 ___________(2)

Using Formula,

\small{\boxed{\tt{\green{\:( \alpha+ \beta)^2\:=\:\alpha^2\:+\:\beta^2\:+\:2\alpha\:\beta}}}}

Keep above all values,

➡ (-5)² = α² + β² + 2 × 8

➡ 25 = α² + β² + 16

➡ α² + β² = 25 - 16

➡ α² + β² = 9

\Large{\underline{\underline{\mathfrak{\red{\bf{Hence}}}}}}

  • Value of α² + β² = 9

__________________

Similar questions