Math, asked by hdj061494, 8 months ago

If α and β are the zeroes of the polynomial x2−8x+k such that α2+β2=40, find ′k′.

Answers

Answered by Anonymous
37

 \large\bf\underline{Given:-}

  • p(x) = x² - 8x + k
  • α² + β² = 40

 \large\bf\underline {To \: find:-}

  • Value of k.

 \huge\bf\underline{Solution:-}

it is given that α and β are the zeroes of the given polynomial.

  • »»p(x) = x² - 8x + k
  • a = 1
  • b = -8
  • c = k

≫ Sum of zeroes = - b/a

⠀⠀⠀⠀⠀»» α + β = -(-8)/1

⠀⠀⠀⠀⠀»» α + β = 8

≫ product of zeroes = c/a

⠀⠀⠀⠀⠀»» αβ = k

we know that,

★ (a + b) ² = a² + b² + 2ab

≫ (a + b)² - 2ab = a² + b²

So,

⠀⠀⠀⠀⠀»» (α + β)² - 2ab = a² + b²

⠀⠀⠀⠀⠀»» 8² -2× k = 40

⠀⠀⠀⠀⠀»» 64 - 2k = 40

⠀⠀⠀⠀⠀»» - 2k = 40 - 64

⠀⠀⠀⠀⠀»» - 2k = -24

⠀⠀⠀⠀⠀»» k = -24/-2

⠀⠀⠀⠀⠀»» k = 12

✦ Value of k is 12.

Answered by ItsTogepi
15

\huge\underline\mathtt\color{pink}Given:

  • p(x)=x² - 8x + k
  •  { \alpha }^{2}  +  { \beta }^{2}  = 40

\huge\underline\mathtt\color{pink}ToFind:

  • The value of K

\rule{300}{2}

\huge\underline\mathtt\color{pink}Solution:

 \alpha  \: and \:  \beta are the zeros of the polynomial x² - 8x + k.

Here, a = 1 ,b = - 8 and c = k

Sum of the zeros

\sf{\implies \alpha  +  \beta  =  \frac{ - b}{a}}

\sf{\implies  \alpha  +  \beta  =  \frac{ - 8}{1}}

\sf{\implies \alpha  +  \beta  =  - 8}

Product of the zeros

\sf{\implies  \alpha  \beta  =  \frac{c}{a} }

\sf{\implies \alpha  \beta  =  \frac{k}{1}  }

\sf{\implies \alpha  \beta  = k}

Now,

\sf{ ({a + b})^{2}  =  {a}^{2} + 2ab  +  {b}^{2} }

\sf{\implies {a + b}^{2}  - 2ab =  {a}^{2}  +  {b}^{2} }

\rule{300}{2}

The required value of K is

\sf{ ({a + b})^{2}  - 2ab =  {a}^{2}  +  {b}^{2} }

\sf{ {\implies - 8}^{2}  - 2.k = 40}

\sf{\implies 64 - 2k = 40}

\sf{\implies   - 2k = 40 - 64}

\sf{\implies - 2k =  - 24}

\sf{\implies k = \cancel\frac{ - 24}{ - 2}  }

\sf{\implies k = 12}

Hence,the value of k is 12.

\huge\underline\mathtt\color{pink}ThankYou

Similar questions