Math, asked by bman82, 8 months ago

If α and β are the zeroes of the polynomial
xsquare+ x – 1, the evaluate α + β + αβ.

Answers

Answered by MaheswariS
0

\textbf{Given:}

\text{$\alpha$ and $\beta$ are zeros of $x^2+x-1$}

\textbf{To find:}

\text{The value of $\alpha+\beta+\alpha\beta$}

\textbf{Solution:}

\text{Since $\alpha$ and $\beta$ are zeros of $x^2+x-1$, we have}

\text{Sum of the zeros}=\dfrac{-b}{a}

\alpha+\beta=\dfrac{-1}{1}

\implies\alpha+\beta=-1

\text{Product of the zeros}=\dfrac{c}{a}

\alpha\,\beta=\dfrac{1}{1}

\implies\alpha\,\beta=1

\text{Now,}

\alpha+\beta+\alpha\,\beta

=-1+1

=0

\therefore\textbf{The value of $\bf\alpha+\beta+\alpha\beta$ is 0}

\textbf{Find more:}

1)If alpha and beta are zeroes of quadratic polynomial x2 -(k+6x)+2(2k-1) 

find k if alpha +beta=1/2alpha beta 

2)If alpha and beta are zeroes of x2-6x+a, find the value of a if 3alpha+2beta=20

https://brainly.in/question/16419985

Similar questions