Math, asked by harshbijaysingh1234, 8 months ago

plzz slove this question I will mark the branlistest ​

Attachments:

Answers

Answered by shyam29158
2

Step-by-step explanation:

it will be ur answer of it dont brake ur promise

Attachments:
Answered by Anonymous
20

Given

\sf If\:x=\dfrac{\sqrt{2}+1}{\sqrt{2}-1}\:and\:y=\dfrac{\sqrt{2}-1}{\sqrt{2}+1}

To find

Find the value of x² + y² + xy

Solution

\implies\sf If\;x=\dfrac{\sqrt{2}+1}{\sqrt{2}-1}

Rationalize its denominator

\implies\sf x=\dfrac{\sqrt{2}+1}{\sqrt{2}-1}\times\dfrac{\sqrt{2}+1}{\sqrt{2}+1} \\ \\ \implies\sf x=\dfrac{(\sqrt{2}+1)^2}{(\sqrt{2})^2-(1)^2} \\ \\ \implies\sf x=\dfrac{(\sqrt{2})^2+(1)^2+2\times\sqrt{2}\times{1}}{2-1} \\ \\ \implies\sf 2+1+2\sqrt{2}\\ \\ \implies\sf x=3+2\sqrt{2}

__________________________

\implies\sf If\;y=\dfrac{\sqrt{2}-1}{\sqrt{2}+1}

Rationalize its denominator

\implies\sf y=\dfrac{\sqrt{2}-1}{\sqrt{2}+1}\times\dfrac{\sqrt{2}-1}{\sqrt{2}-1} \\ \\ \implies\sf y=\dfrac{(\sqrt{2}-1)^2}{(\sqrt{2})^2-(1)^2} \\ \\ \implies\sf y=\dfrac{(\sqrt{2})^2+(1)^2-2\times\sqrt{2}\times{1}}{2-1} \\ \\ \implies\sf 2+1-2\sqrt{2} \\ \\ \implies\sf y=3-2\sqrt{2}

Now, the value of + + xy

Putting the value of both x and y

\implies\sf x^2+y^2+xy

\sf =(3+2\sqrt{2})^2+(3-2\sqrt{2})^2+(3+2\sqrt{2})(3-2\sqrt{2}) \\ \\ \sf =(3)^2+(2\sqrt{2})^2+2\times{3}\times{2\sqrt{2}}+

\sf (3)^2+(2\sqrt{2})^2-2\times{3}\times{2\sqrt{2}}+(3)^2-(2\sqrt{2})^2 \\ \\ \sf =9+8+12{\sqrt{2}}+9+8-12{\sqrt{2}}+9-8 \\ \\ \sf =17+17+1 \\ \\ \sf =35

Similar questions