Math, asked by llKingAkshatll, 2 months ago

If ∝ and β are the zeroes of the quadratic polynomial p(y) = 5y² - 7y + 1, find the value of 1/∝ + 1/β ?

Answers

Answered by WonderfulSoul
49

Question :

  • If ∝ and β are the zeroes of the quadratic polynomial p(y) = 5y² - 7y + 1, find the value of 1/∝ + 1/β ?

To find :

  • p(y) = 5y² - 7y + 1, find the value of 1/∝ + 1/β ?

Solution :

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  ↦ \tt \: a = 5, b = -7, c =1

  \:  \:  \:  \:  \:    ↦ \large\tt\alpha  +  \beta  =  \frac{ - b}{a}  = \frac{ - ( - 7)}{5}  =  \frac{7}{5}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ↦  \large\tt \alpha  \beta  =  \frac{c}{a}  =  \frac{1}{5}  = 5

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \large\tt↦ \frac{1}{ \alpha }  +  \frac{1}{ \beta }  =  \frac{ \alpha }{ \beta }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \large \tt↦ \frac{ \beta  +  \alpha }{ \alpha  \beta }  =  \frac{7}{ \frac {5}{5}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \large \tt↦ \frac{ \beta  +  \alpha }{ \alpha  \beta }  = 7

Other information :

  • the first letter of the Greek alphabet (α) are know ans alpha

  • In mathematics, the beta function, also called the Euler integral of the first kind, is a special function that is closely related to the gamma function and to binomial coefficients.

  • It is defined by the integral. for complex number inputs x, y such that Re x > 0, Re y > 0.
Similar questions