Math, asked by kingkiran3, 11 months ago

If α and β are the zeros of polynomial x2 + 3x - 4, find a polynomial whose zeros are 3α+1

and 3β+1​

Answers

Answered by ihrishi
9

Step-by-step explanation:

given \: polynomial \: is \: {x}^{2}  + 3x - 4 \\ comparing \: it \: with \: a {x}^{2}  + bx + c \: we \: find \: a = 1 \: b = 3 \: and \: c =  - 4 \\  \alpha  \: and \:  \beta  \: are \: the \: zeros \: of \: given \: polynomial \\  \alpha  +  \beta  =   - \frac{b}{a} =  -   \frac{3}{1}  =  - 3....(i) \\  \alpha  \beta  =  \frac{c}{a}  =  - 4 \\ now \:  \\  ({ \alpha  -  \beta })^{2}  =  ({ \alpha   +   \beta })^{2}   - 4 \alpha  \beta  \\  =  ({ - 3})^{2}  - 4( - 4) = 9 + 16 = 25 \\   \alpha  -  \beta  = 5....(ii) \\ solving \: equtions \: (i) \: and \: (ii) \: we \: find \\  \alpha  = 1 \\  \beta  =  - 4 \\now \:  \\  3 \alpha  + 1 = 4 \\ 3 \beta  + 1 =  - 11 \\ (3 \alpha  + 1) + (3 \beta  + 1) = 4 - 11 =  - 7 \\ (3 \alpha  + 1) . (3 \beta  + 1)  = 4.( - 11) =  - 44 \\ required \: polynomial \: is \:  \\  {x}^{2}  -( (3 \alpha  + 1) + (3 \beta  + 1)) x + (3 \alpha  + 1) . (3 \beta   + 1)  \\ =   {x}^{2}  - ( - 7)x + ( - 44) \\  =  {x}^{2}  + 7x - 44


kingkiran3: thank u brother for your kind answer
ihrishi: Welcome dear..
kingkiran3: m ur name
Similar questions