Math, asked by hardika55, 1 month ago

If α and β are the zeros of the polynomial x
2
+8x+6, form a quadratic polynomial whose zeros are α+β/α, α+β/ β​

Answers

Answered by mahipatel010701
3

Answer:

Full answer is photo below.

Step-by-step explanation:

I hope this answer is you useful.

Attachments:
Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\: \alpha  \: and \:  \beta  \: are \: zeroes \: of \:  {x}^{2} + 8x + 6

We know,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\rm :\implies\: \alpha  +  \beta  =  - \dfrac{8}{1} =  -  \: 8

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\rm :\implies\: \alpha  \beta  = \dfrac{6}{1}  = 6

Now, we have to form a quadratic polynomial whom zeroes are

\rm :\longmapsto\:\dfrac{ \alpha  +  \beta }{ \alpha } , \: \dfrac{ \alpha  +  \beta }{ \beta }

Consider,

Sum of zeroes,

\rm :\longmapsto\:S = \rm \:\dfrac{ \alpha  +  \beta }{ \alpha } \:  + \: \dfrac{ \alpha  +  \beta }{ \beta }

\rm  \:  =  \: \:( \alpha   + \beta)\bigg(\dfrac{1}{ \alpha }  + \dfrac{1}{ \beta }  \bigg)

\rm  \:  =  \: \:( \alpha   + \beta)\bigg(\dfrac{ \beta  +  \alpha }{ \alpha \beta}\bigg)

\rm  \:  =  \: \:( - 8) \times \dfrac{( - 8)}{6}

\rm  \:  =  \: \:\dfrac{32}{3}

\bf\implies \:S \:  =  \: \dfrac{32}{3}

Product of zeroes,

\rm :\longmapsto\:P = \:\dfrac{ \alpha  +  \beta }{ \alpha }  \times \: \dfrac{ \alpha  +  \beta }{ \beta }

\rm  \:  =  \: \:\dfrac{ { (\alpha +  \beta ) }^{2} }{ \alpha  \beta }

\rm  \:  =  \: \:\dfrac{ {( - 8)}^{2} }{6}

\rm  \:  =  \: \:\dfrac{64}{6}

\rm  \:  =  \: \:\dfrac{32}{3}

\bf\implies \:P\:  =  \: \dfrac{32}{3}

Hence,

The required Quadratic polynomial is

\rm :\longmapsto\:f(x) = k\bigg( {x}^{2}  - Sx + P\bigg), \: where \: k \:  \ne \: 0

\rm :\longmapsto\:f(x) = k\bigg( {x}^{2}  -  \dfrac{32}{3} x +  \dfrac{32}{3} \bigg), \: where \: k \:  \ne \: 0

Additional Information :-

\rm :\longmapsto\:\sf \:  \alpha , \beta , \gamma  \: are \: zeroes \: of \:  {ax}^{3} +  {bx}^{2} + cx + d, \: then \:

\green{ \boxed{ \bf \:  \alpha +   \beta +   \gamma  =  -  \: \dfrac{b}{a} }}

\green{ \boxed{ \bf \:  \alpha \beta  +   \beta \gamma  +   \gamma \alpha   =  \: \dfrac{c}{a} }}

\green{ \boxed{ \bf \:  \alpha \beta  \gamma  =  -  \: \dfrac{d}{a} }}

Similar questions