Math, asked by samira373, 2 months ago

If α and β are the zeros of the quadratic polynomial f(x) = 2x² -5x + 7, find a polynomial whose zeros

are 2α+ 3β and 3α+ 2β?​

Answers

Answered by mathdude500
21

\large\underline{\bf{Solution-}}

Given that

  • α and β are the zeros of the quadratic polynomial f(x) = 2x² -5x + 7

We know,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\rm :\implies\: \alpha  +  \beta  =  - \dfrac{( - 5)}{2} = \dfrac{5}{2}   -  - (1)

And

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\rm :\implies\: \alpha  \beta  = \dfrac{7}{2}  -  - (2)

Now,

To find a quadratic polynomial having zeroes 2α+ 3β and 3α+ 2β.

Consider,

\rm :\longmapsto\:Sum \: of \: zeroes \:

\rm :\longmapsto\:2 \alpha + 3  \beta + 3  \alpha  + 2 \beta

\rm \:  \:  =  \:  \:  5\alpha  +  5\beta

\rm \:  \:  =  \:  \:  5(\alpha  +  \beta)

\rm \:  \:  =  \:  \: 5 \times \dfrac{5}{2}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \: using \: (1)\bigg \}}

\rm \:  \:  =  \:  \: \dfrac{25}{2}

Consider,

\rm :\longmapsto\:Product \: of \: zeroes

\rm \:  \:  =  \:  \: (2 \alpha  + 3 \beta )(2 \beta  + 3 \alpha )

\rm \:  \:  =  \:  \: 4 \alpha  \beta  +  {6 \alpha }^{2} +  {6 \beta }^{2} +   9 \alpha  \beta

\rm \:  \:  =  \:  \:  {6 \alpha }^{2} +  {6 \beta }^{2} + 12 \alpha  \beta  +  \alpha  \beta

\rm \:  \:  =  \:  \:  6({ \alpha }^{2} +  { \beta }^{2} + 2 \alpha  \beta)  +  \alpha  \beta

\rm \:  \:  =  \:  \:  6({\alpha +  \beta ) }^{2}   +  \alpha  \beta

\rm \:  \:  =  \:  \: 6 \times \dfrac{25}{4}  + \dfrac{7}{2}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \: using \: (1) \: and \: (2)\bigg \}}

\rm \:  \:  =  \:  \: \dfrac{75}{2}  + \dfrac{7}{2}

\rm \:  \:  =  \:  \: \dfrac{82}{2}

\rm \:  \:  =  \:  \: 41

So,

The required Quadratic polynomial whose zeroes are 2α+ 3β and 3α+ 2β is given by

\bf :\longmapsto\:p(x) = k( {x}^{2} - Sx + P) \: where \: k \ne \: 0

where,

  • S is sum of zeroes

  • P is product of zeroes

Hence,

\bf :\longmapsto\:p(x) = k\bigg( {x}^{2} - \dfrac{25}{2}x + 41\bigg)  \: where \: k \ne \: 0

Similar questions