If α and β are the zeros of the quadratic polynomial f(x) = x² - 2x + 3 , find a polynomial whose roots are (i) α + 2, β + 2 (ii) (α - 1)/(α + 1), (β - 1)/(β + 1) .
Answers
HERE IS YOUR ANSWER
CHEERS
MARK BRAINLIEST ⭐
(i) f(x) = k(x² -9x +11)
(ii) f(x) = k(x² -2/3x +1/3)
Step-by-step explanation:
f(x) = x² - 2x + 3
α and β are the zeroes of the polynomial.
Then α + β = -b/a = -(-2)/1 = 2
αβ = c/a = 3/1 = 3
(i) α + 2, β + 2 are the zeroes.
Then the polynomial will be f(x) = k(x² -Sx +P)
S = α + 2 + β + 2 = 4 + (α + β) = 4 + 2 + 3 = 9
P = (α + 2)(β + 2) = (αβ + 2((α + β) + 4) = 3 + 2(2) + 4 = 11
So the polynomial will be:
f(x) = k(x² -9x +11)
(ii) (α - 1)/(α + 1), (β - 1)/(β + 1).
S = (α - 1)/(α + 1) + (β - 1)/(β + 1).
= [(α - 1)(β + 1) + (α + 1)(β - 1) ]/ (α + 1)(β + 1)
= (αβ + α-β - 1) + (αβ - α +β - 1) / (αβ + α +β + 1)
= (2αβ - 2) / (αβ + α+β + 1)
= 2(3) - 2 / 3 + 2 + 1
= 4/6
= 2/3
P = (α - 1)/(α + 1) * (β - 1)/(β + 1).
= (α - 1)(β - 1) / (α + 1)(β + 1)
= (αβ - α-β + 1) / (αβ + α +β +1)
= (3 - 2 + 1) / (3 + 2 + 1)
= 2/6
= 1/3
So the polynomial will be:
f(x) = k(x² -2/3x +1/3)