Math, asked by Harsh5103, 11 months ago

If α and β are zeroes of polynomial p(x)= 4x^{2} -5x - 1 then find: 1/α^{2} - 1/β^{2}

Answers

Answered by BrainlyPopularman
1

{ \bold{ \green{ \underline{ANSWER} : -  } }}

{ \bold{ \underline{Given \:  \: polynomial} : -  }} \\  \\ { \bold{ \pink{p(x) = 4 {x}^{2}  - 5x - 1}}}

{ \bold{ \underline{ \underline{To  \: find}} :  - }} \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: { \bold{ \orange{ \frac{1}{ { \alpha }^{2} }  -  \frac{1}{ { \beta }^{2} } }}}

{ \bold{ \pink{ =  \frac{1}{ { \alpha }^{2} } -  \frac{1}{ { \beta }^{2} }  }}} \\  \\  { \bold{ \pink{ = \frac{ { \beta }^{2}  -  { \alpha }^{2} }{ {( \alpha  \beta )}^{2} } }}} \\  \\ { \bold{ \pink{ = \frac{ - ( \alpha  +  \beta )( \alpha  -  \beta )}{ {( \alpha  \beta )}^{2} } }}} \\  \\   { \bold{ \pink{ = \frac{ - ( -  \frac{b}{a})( \frac{ \sqrt{d} }{a})  }{ {( \frac{c}{a} )}^{2} } }}} \\  \\  { \bold{ \pink{ = \frac{b \sqrt{d} }{ {c}^{2} } }}} \\  \\  { \bold{ \pink{ = \frac{ (- 5) \sqrt{ {( - 5)}^{2}  - 4(4)( - 1)} }{1} }}} \\  \\  { \bold{ \pink{ = - 5 \sqrt{25 + 16} }}} \\  \\  { \bold{ \pink{ = - 5 \sqrt{41} }}} \\  \\  { \bold{ \boxed{\pink{ \huge{FOLLOW \:  \:  ME... }}}}}

Similar questions