If α and β are zeroes of polynomial p(x) = x2-5x+6 then find the value of α - β+3αβ
Answers
1)If alpha and beta are zeroes of quadratic polynomial x2 -(k+6x)+2(2k-1)
find k if alpha +beta=1/2alpha beta
2)If alpha and beta are zeroes of x2-6x+a, find the value of a if 3alpha+2beta=20
https://brainly.in/question/16419985
3)If α and β are the zeroes of the polynomial
xsquare+ x – 1, the evaluate α + β + αβ
https://brainly.in/question/17511372
Step-by-step explanation:
iven:
\mathrm{\alpha}\;\text{and}\;\mathrm{\beta}\;\text{are zeros of}αandβare zeros of
\mathrm{P(x)=x^2-5x+6}P(x)=x
2
−5x+6
\textbf{To find:}To find:
\text{The value of}The value of
\mathrm{\alpha-\beta+3\alpha\beta}α−β+3αβ
\textbf{Solution:}Solution:
\text{Consider,}Consider,
\mathrm{P(x)=x^2-5x+6}P(x)=x
2
−5x+6
\mathrm{\alpha+\beta=5}α+β=5
\mathrm{\alpha\,\beta=6}αβ=6
\mathrm{(\alpha-\beta)^2=(\alpha+\beta)^2-4\,\alpha\,\beta}(α−β)
2
=(α+β)
2
−4αβ
\mathrm{(\alpha-\beta)^2=(5)^2-4(6)}(α−β)
2
=(5)
2
−4(6)
\mathrm{(\alpha-\beta)^2=25-24}(α−β)
2
=25−24
\mathrm{(\alpha-\beta)^2=1}(α−β)
2
=1
\mathrm{\alpha-\beta=1}α−β=1
\text{Now}Now
\mathrm{(\alpha-\beta)+3\alpha\beta}(α−β)+3αβ
\mathrm{=1+3(6)}=1+3(6)
\mathrm{=1+18}=1+18
\mathrm{=19}=19
\textbf{Answer:}Answer:
\text{The value of}The value of
\mathrm{\alpha-\beta+3\alpha\beta=19}α−β+3αβ=19