Math, asked by YFIE, 10 months ago

If α and β are zeroes of quadratic polynomial. f(x) = x² -x -4 i ) α³ + β³ ii ) 1/α³ + 1/β³

Answers

Answered by ipsic
2
///////////////////////
Attachments:
Answered by ZzyetozWolFF
0

 \tt since  \: \alpha  \: and \:  \beta  \: are \: zeroes \: of \: quadratic \: polynomial \:  \: .

 \tt \: f(x) =  {x}^{2}  - x - 4

 \tt \therefore \:  \:  \:  \alpha  +  \beta  = ( \frac{ - b}{a} )  = 1 \: and \:  \alpha  \:   \beta  =  \frac{c}{a}  =  \frac{ - 4}{1}  =  - 4

 \tt  i)  \alpha ^{3}  +  \beta  {}^{3}  =   {( \alpha  +  \beta })^{3 }   - 3 \alpha  \beta ( \alpha  +  \beta )

 \alpha  {}^{3}  +  \beta   {}^{3}  = ( \frac{ - b}{a} ) - 3 \frac{c}{a} ( -  \frac{b}{a} )

 \longrightarrow \:  \alpha  {}^{3}  +  \beta  {}^{3}  =  - (1 {)}^{3}  - 3( - 4)(1) = 13

 \frac{1}{ {a}^{3}   }  +  \frac{1}{ {b +}^{3} }  =  \frac{ { \alpha {}^{3}   +  { \beta }^{3} } }{ { \alpha }^{3}   + \beta  {}^{3} }  =  \frac{ \frac{3abc -  {b}^{3} }{ {a}^{3} } }{  \frac{( \frac{c}{a {}^{3} } )}{} }

 \rightarrow \:  \frac{1}{ { \alpha }^{3} }  +  \frac{1}{ { \beta }^{3}   }  =  \frac{13}{( - 4) {}^{3} }  =  \frac{ - 13}{64}

Similar questions