Math, asked by Anonymous, 9 months ago

If α and β are zeroes of the polynomial p(x)=2x²+5x+k such that α²+β²+αβ=21/4
Find value of 'k'​

Answers

Answered by Cynefin
31

━━━━━━━━━━━━━━━━━━━━

Required Answer:

♦️ GiveN:

  • \large{\rm{\alpha}} and \large{\rm{\beta}} are the zeroes of polynomial \large{\rm{P(x) = 2{x}^{2}+5x+k}}

  •  \large{ \rm{ { \alpha }^{2}  +  { \beta }^{2}  +  \alpha  \beta  =  \frac{21}{4} }}

♦️ To FinD:

  • Find the value of k

━━━━━━━━━━━━━━━━━━━━

How to solve?

Before solving this question, we need to know the relationship of zeroes and coefficients of the quadratic polynomial. The relations are:

 \large{ \boxed{ \rm{ \purple{Sum \: of \: zeroes =  -  \frac{coefficient \: of \: x}{coefficient \: of \:  {x}^{2} } }}}}

And,

 \large{ \boxed{ \rm{ \purple{Product \: of \: zeroes  =  \frac{constant \: term}{coefficient \: of \:  {x}^{2} } }}}}

I think, we should always remember this relation. I know that people often use, sum of zeroes = -b/a and product of zeroes = c/a when the quadratic polynomial ax^2+bx+c, but this might cause confusion when the coefficients are changed.

So, let's solve this question,

━━━━━━━━━━━━━━━━━━━━

Solution:

We have, \large{\rm{\alpha}} and \large{\rm{\beta}} are the zeroes of polynomial P(x).

Then, according to relation,

\large{ \rm{ \longrightarrow \:  \alpha  +  \beta  =  \frac{ - 5}{2} }} \\  \\ \large{ \rm{ \longrightarrow \:  \alpha  \beta  =  \frac{k}{2} }}

Also given,

\large{ \rm{ \longrightarrow \:   { \alpha }^{2}  +  { \beta }^{2}  +  \alpha  \beta  =  \frac{21}{4} }}

Using identity,

  \large{ \rm{ \ast{(a + b)}^{2}  =  {a}^{2}  + 2ab +  {b}^{2} }} \\  \\  \large{ \rm{ \ast{(a + b) {}^{2}  - ab =  {a}^{2}  + ab +  {b}^{2} }}}

Arranging \large{\rm{\alpha}} and \large{\rm{\beta}} equation accordingly,

\large{ \rm{ \longrightarrow \:  {( \alpha +  \beta ) }^{2}  -  \alpha  \beta  =  \frac{21}{4} }} \\  \\ \large{ \rm{ \longrightarrow \: ( \frac{ - 5}{2} ) {}^{2}  -  \frac{k}{2}  =  \frac{21}{4} }} \\ \\ \large{ \rm{ \longrightarrow \:  \frac{25}{4}   -  \frac{k}{2}  =  \frac{21}{4} }} \\  \\ \large{ \rm{ \longrightarrow \:  \frac{k}{2}  =  \cancel{ \frac{4}{4} }}} \\  \\ \large{ \rm{ \longrightarrow \:  \frac{k}{2}  = 1}} \\  \\ \large{ \rm{ \longrightarrow \:  \boxed{ \green{ \rm{k = 2}}}}} \\  \\  \large{ \therefore{ \underline{ \underline{ \rm{ \red{Hence, \: solved \:  \dag}}}}}}

━━━━━━━━━━━━━━━━━━━━

Answered by TheSentinel
31

\purple{\underline{\pink{\boxed{\boxed{\red{\star{\sf Question:}}}}}}} \\ \\

\rm{If \ \alpha \ and \ \beta \ are \ zeroes \ of \ the \ polynomial }

\rm{p(x) \ = \ 2{x}^{2}+5x+k \ such \ that }

\rm{{ \alpha}^{2}+{ \beta}^{2}+ \alpha \beta \ =  \ \frac{21}{4}. \ Find \ the \ value \ of \ k}

_________________________________________

\purple{\underline{\orange{\boxed{\boxed{\green{\star{\sf Answer:}}}}}}} \\ \\

\sf\large\underline\blue{Hence, \ the \ value \ of \ k \ is \ 2} \\ \\

_________________________________________

\sf\large\underline\pink{Given:} \\ \\

\rm{Given, \ quadratic \ polynomial  \ is :}

\rm{p(x) \ = \ 2{x}^{2}+5x+k} \\

\rm{Also,}

\rm{{\alpha}^{2}+{ \beta}^{2}+ \alpha \beta \ =  \ \frac{21}{4}}

_________________________________________

\sf\large\underline\blue{To \ Find} \\ \\

\rm{The \ value  \ of \ k }

_________________________________________

\green{\underline{\red{\boxed{\boxed{\purple{\star{\sf Solution:}}}}}}} \\ \\

\rm{we \ are \ given \ that, }

\rm{\alpha \ and \ \beta \ are \ the \ zeroes }

\rm{of \ given \ polynomial} \\

\rm{Now , \ using \ relation}

\rm{\implies{ \alpha  +  \beta  =  \frac{ - 5}{2}} } \\

\rm{\implies{ \alpha  \beta  =  \frac{k}{2} }}

\rm{but \ we \ are \ given,}

\rm\implies{ { \alpha }^{2}  +  { \beta }^{2}  +  \alpha  \beta  =  \frac{21}{4} }

\rm\implies{{( \alpha +  \beta ) }^{2}  -  \alpha  \beta  =  \frac{21}{4} } \\  \\

\rm{using}

\rm{ {(a + b)}^{2}  =  {a}^{2}  + 2ab +  {b}^{2} }

\rm{ and} \\

\rm{ {(a + b)}^{2}  - ab =  {a}^{2}  + ab +  {b}^{2} }

\rm\implies{{ ( \frac{ - 5}{2} )} ^{2}  -  \frac{k}{2}  =  \frac{21}{4} } \\ \\

\rm{\implies{ \frac{25}{4}   -  \frac{k}{2}  =  \frac{21}{4} }} \\  \\

\rm{\implies{ \frac{k}{2}  = \cancel{ \frac{4}{4} }}} \\  \\

\rm{\implies{ \frac{k}{2}  = 1}} \\  \\

\rm{\therefore{\boxed{\purple{\bf{k = 2}}}}} \\  \\

\sf\large\underline\blue{Hence, \ the \ value \ of \ k \ is \ 2} \\ \\

_____________________________________

\bf\pink{Hope \ it \ helps \ :)) }

Similar questions