Math, asked by MichWorldCutiestGirl, 19 days ago

If α and β are zeros of polynomial 3x² -x+2 , then form a polynomial whose zeroes are 3α and 3β​

Answers

Answered by xxcuteboyxx62
5

\begin{gathered}\huge\blue{\mid{\fbox{\tt{SOLUTION}}\mid}} \\ \end{gathered}

Now. \: a \:  +  \beta  =  -  \frac{b}{a}  \\  =   \frac{ - ( - 7)}{3}

 \alpha  \:  +  \beta  =  \frac{7}{3} ....(1) \\ and \:  \alpha  \beta  =  \frac{c}{a}  =  \frac{ - 6}{3}

αβ=−2...(2)

(1) α2+β2=(α+β)2−2α+β

=(37)2−2(−2)     [ from (1) & (2)]$$

=949+4=949+36=985

α2β2=(αβ)2=(−2)2=4

 

The pohynomical whose roots are α2,β2 is given by , x2−(sumofroots)x+productofroots

=x2−985x+4

=99x2−85x+36

=91(9x2−85x+36)

(2) (2α+3β)+(3α+2β)=5α+5β

=5(α+β)

=5⋅37

=335

(2α+3β)+(3α+2β)=6α24αβ+9αβ+6β2

=6(α2+β2)+13αβ

=6{(α+β)2−2αβ}+Bαβ

=6(α+β)2−12αβ+Bαβ

=6(α+β)2+αβ

=6(37)2+(−2)

=6⋅949−2

=398−2

=398−6

=392

the required polynomial whose you are (2α+3β) and (3α+2β) is

x2−335x+392

=31(3x2−35x+92)

Answered by user0888
12

\large\text{$x^{2}-x+6$}

\large\underline{\large\underline{\text{How I solved this problem}}}

Firstly, I found the relation between the old and new roots. Then, I built a new polynomial f(x).

As we know the relation of the pair of roots, we can find g(x) then easily derive f(g(g^{-1}))(x)=f(x).

It is a composition of functions.

Why I introduced the method is that this method is conventional, even for higher degrees of polynomials.

\large\underline{\large\underline{\text{Explanation}}}

Let us assume new roots are,

\cdots \longrightarrow \text{$x=\alpha'$ or $x=\beta'$.}

The new and old roots satisfy,

\cdots \longrightarrow \text{$\alpha '=3\alpha$ and $\beta '=3\beta$.}

Let f(x) be the required new polynomial. Then, since \text{$x=\alpha '$ or $x=\beta '$} are new roots, it satisfies,

\cdots \longrightarrow \text{$f( \alpha ')=0$ and $f( \beta ')=0$.}

As we know,

\cdots \longrightarrow \text{$f(x)=0$ for $x=3 \alpha $ and $x=3 \beta$.}

So, the old polynomial is,

\cdots \longrightarrow f(3x)=3x^{2}-x+2.

g(x)=3x then g^{-1}(x)=\dfrac{1}{3}x,

\cdots \longrightarrow f(g(g^{-1}))(x)=\dfrac{1}{3} x^{2}- \dfrac{1}{3} x+2.

As we know,

\cdots \longrightarrow f(x)=\dfrac{1}{3} x^{2}- \dfrac{1}{3} x+2.

Lastly, as we know we can multiply any nonzero number,

\large\text{\underline{Answer}} \rightarrow \boxed{x^{2}-x+6.}

\large\underline{\large\underline{\text{Interesting facts}}}

If a polynomial f(x)=ax^{2}+bx+c has \text{$x= \alpha $ or $x=\beta $} as roots, the new equation having reciprocal roots is \text{$f(x)=cx^{2}+bx+a$ for $ac \neq 0$.}

Similar questions