Math, asked by adarsharun2010, 1 year ago

IF α,β,and gamma are the zeroes of the polynomials f(x)=px³+qx²+rx+s , then find the value of α²+β²+gamma²

Answers

Answered by praneethks
3

f(x) = p {x}^{3} + q {x}^{2} + rx + s

If a,b,c are the roots of the above polynomial then a+b+c =>-q/p and ab+bc+ca=>r/p.

 {(a + b + c)}^{2}  =  \frac{ {q}^{2} }{ {p}^{2} }  =  >  {a}^{2} +  {b}^{2} +  {c}^{2}  +

2ab + 2bc + 2ca =  \frac{ {q}^{2} }{ {p}^{2} }  =  >  {a}^{2} +{b}^{2} +

 {c}^{2}  +  \frac{2r}{p} =  \frac{ {q}^{2} }{ {p}^{2} }  =  >  {a}^{2} + {b}^{2} +  {c}^{2} =  \frac{ {q}^{2} }{ {p}^{2} }  -

 \frac{2r}{p} =  >  {a}^{2}  +  {b}^{2} +  {c}^{2} =  \frac{ {q}^{2} - 2pr}{ {p}^{2}}

Hope it helps you.

Similar questions