If α,β and are zeroes of cubic polynomial kt³-5t+9, also α³+β³+=27, find the value of 'k'.
Answers
Let the roots be p , q , r for my convenience .
k t³ - 5 t + 9 = 0
==> k t³ + 0 t² - 5 t + 9 = 0
Comparing with a x³ + bx² + c x+ d we get :
a = k
b = 0
c = - 5
d = 9
Sum of roots
We know that sum of roots = -b / a
==> p + q + r = -0/k = 0
We know that if p + q + r = 0
then : p³ + q³ + r³ = 3 pqr
Given : p³ + q³ + r³ = 27
3 pqr = 27
==> pqr = 27/3
= 9 ........................(1)
Product of roots
We know that product of roots = -d/a
= -9/k
Hence pqr = - 9/k
But see (1) ==> 9 = -9/k
==> k = -9/9
==> k = -1
The value of k is -1
Hope it helps u :-)
______________________________________________________________________
Answer:
k = -1
Step-by-step explanation:
Given cubic polynomial is kt³ - 5t + 9.
Here, a = k, b = 0, c = -5, d = 9.
Given that α,β,γ are zeroes of polynomial.
Calculate roots:
α + β + γ = 0
αβ + βγ + γα = 5/k.
αβγ = -9/k
Now,
We know that if α + β + γ = 0, then α³ + β³ + γ³ = 3αβγ
⇒ 27 = 3(-9/k)
⇒ 27 = -27/k
⇒ 27k = -27
⇒ k = -1.
Therefore, the value of k = -1.
---------------------------------------- Merry Christmas --------------------------------------