Math, asked by ishankrocks, 11 months ago

if angle theta is divided into two parts . Tangent of one Part is K times the tangent of other and phy is the difference show that sin theta=k+1/k-1 sin phy​

Attachments:

Answers

Answered by ANGEL123401
16

{} \huge \bold \red{solution =  > }

let \:  \alpha  \:  \beta \:  be \: two \: parts \: of \: angle \: theta \\ then \: given \: theta =  \alpha  +  \beta \:  and \: phi =  \alpha  -  \beta  \\ consider \: tan \alpha =  k \: tan \beta  \\  =  \frac{tan \alpha }{tan \beta }  =  \frac{k}{1}  \\ applying \: componendo \: and\: dividendo \\  =  \frac{tan \alpha  + tan \beta }{tan \alpha  - tan \beta }  =  \frac{k + 1}{k - 1}  \\  =  \frac{sin \alpha  \div cos \alpha  + sin \ \beta   \div cos \ \beta  }{sin \alpha  \div cos \alpha  - sin \beta  \div cos \beta }  =  \frac{k + 1}{k - 1}  \\  =sin \alpha cos \beta  + cos \alpha sin \beta  \div cos \alpha cos \beta  \div sin \alpha cos \beta  - cos \alpha sin \beta  \div cos \alpha cos \beta  =  \frac{k + 1}{k - 1}  \\   we \: know \: that \: sin \: (a + -  b) = sina \: cosb +  - cosa \: sinb \\ sin( \alpha  +  \beta ) \div sin \alpha  -  \beta  = k + 1 \div k - 1 \\  = sin \: theta \div sin \: phi \:  = k + 1 \div k - 1 \\ since \: sin \: theta =  \frac{k + 1}{k - 1}  \times sin \: phi \\  \\  \\ hence \: proved..... \\  \\  \\  \\ {} \huge \bold \red{hope \: it \: helps \: you}

Answered by Uniquedosti00017
0

Answer:

refer to the attachment for the solution.

note - here I have used lambda in place of k , so don't get confused

Attachments:
Similar questions