Math, asked by mayankjoshi123a, 4 months ago

If angles of the triangle are in the ratio 2:3:4. find the value of each angle? ​

Answers

Answered by TwilightShine
70

Answer :-

  • The angles are 40°, 60° and 80° respectively.

Given :-

  • The angles of the triangle are in the ratio 2 : 3 : 4.

To find :-

  • The value of each angle.

Step-by-step explanation :-

The angles of the triangle are in the ratio 2 : 3 : 4.

So, let the angles be 2x, 3x and 4x respectively.

We know that the sum of all the angles in a triangle = 180°.

Thus, we have :-

\sf2x + 3x + 4x = 180^{\circ}

\sf5x + 4x = 180^{\circ}

\sf9x = 180^{\circ}

\sf \: x =  \dfrac{180^{\circ}}{9}

\sf \: x = 20^{\circ}.

Since the value of x = 20°, therefore the value of the angles are as follows :-

\sf2x = 2 \times 20^{\circ} = 40^{\circ}.

\sf3x = 3 \times 20^{\circ} = 60^{\circ}.

\sf4x = 4 \times 20^{\circ} = 80^{\circ}.

Thus, the angles are 40°, 60° and 80°.

Verification :-

To verify your answer, just add them up and see if their value is 180°. (The sum of all the angles of a triangle)

20° + 60° + 80° = 180°.

Since the angles make up 180°,

Hence verified ✔️✔️


mayankjoshi123a: Thanku
TwilightShine: Anytime! :)
Answered by shaktisrivastava1234
123

 \Huge \fbox{Aɴsᴡᴇʀ}

 \large \underline { \underline{ \frak{ \color{red}ɢɪᴠᴇɴ::}}}

 {\mapsto \sf{ Angle \: of  \: triangle_{(in  \: ratio)}=2:3:4}}

 \large \underline { \underline{ \frak{ \color{re}Tᴏ  \: ғɪɴᴅ::}}}

 \leadsto \sf{Angle \:  of  \: triangle. }

 \large \underline { \underline{ \frak{ \color{indigo}Cᴏɴᴄᴇᴘᴛ  \: ᴜsᴇᴅ::}}}

{ \mapsto \sf{Sum  \: of \: angle \:  of  \: triangle \: is \: 180 \degree.} }

 \large \underline { \underline{ \frak{ \color{blue}Aᴄᴄᴏʀᴅɪɴɢ \:  ᴛᴏ  \: ϙᴜᴇsᴛɪᴏɴ::}}}

 \dashrightarrow \sf{2x°+3x°+4x°=180°}

 \dashrightarrow \sf{9x=180°}

 \dashrightarrow \sf{x=20°}

 \bf \underline{Hᴇɴᴄᴇ,}

 \implies \sf{2x°=2×20=40°}

 \implies \sf{3x°=3×20=60°}

 \implies \sf{4x°=4×20=80°}

 \large \underline { \frak{ \pink{Vᴇʀɪғɪᴄᴀᴛɪᴏɴ :  : }}}

 \longrightarrow \sf{2x°+3x°+4x°=180°}

 \longrightarrow \sf{40° + 60° + 80°=180°}

 \longrightarrow \sf{180°=180°}

 \longrightarrow \sf{L.H.S.=R.H.S.}


Anonymous: Vgood ✨
Similar questions