Physics, asked by muskanhussain3369, 9 months ago

If angular displacemebt of object is given by theta=7t+ t^2 + t^3 where time is seconds.its angular accleration at 1 sec is

Answers

Answered by pardhupaddu
0

Explanation:

differentiation of angular velocity is numarically angular acceleration...

Attachments:
Answered by varadad25
1

Answer:

The angular acceleration at t = 1 s is 8 rad/s².

Explanation:

We have given that,

Angular displacement \displaystyle{\sf\:(\:\theta\:)\:=\:7t\:+\:t^2\:+\:t^3}

Time ( t ) is in seconds.

We have to find the angular acceleration \displaystyle{\sf\:(\:\alpha\:)} at t = 1 s.

We know that, angular velocity is given by

\displaystyle{\boxed{\pink{\sf\:\omega\:=\:\dfrac{d\:\theta}{dt}\:}}}

\displaystyle{\implies\sf\:\omega\:=\:\dfrac{d}{dt}\:(\:7t\:+\:t^2\:+\:t^3\:)}

\displaystyle{\implies\sf\:\omega\:=\:\dfrac{d}{dt}\:(\:7t\:)\:+\:\dfrac{d}{dt}\:(\:t^2\:)\:+\:\dfrac{d}{dt}\:(\:t^3\:)}

\displaystyle{\implies\sf\:\omega\:=\:7\:\times\:1\:+\:2t^{2\:-\:1}\:+\:3t^{3\:-\:1}}

\displaystyle{\implies\sf\:\omega\:=\:7\:+\:2t\:+\:3t^2}

\displaystyle{\implies\:\boxed{\green{\sf\:\omega\:=\:3t^2\:+\:2t\:+\:7\:}}}

Now, we know that,

\displaystyle{\boxed{\blue{\sf\:\alpha\:=\:\dfrac{d\:\omega}{dt}\:}}}

\displaystyle{\implies\sf\:\alpha\:=\:\dfrac{d}{dt}\:(\:3t^2\:+\:2t\:+\:7\:)}

\displaystyle{\implies\sf\:\alpha\:=\:\dfrac{d}{dt}\:(\:3t^2\:)\:+\:\dfrac{d}{dt}\:(\:2t\:)\:+\:\dfrac{d}{dt}\:(\:7\:)}

\displaystyle{\implies\sf\:\alpha\:=\:3\:\times\:2\:t^{2\:-\:1}\:+\:2\:\times\:1\:+\:0}

\displaystyle{\implies\sf\:\alpha\:=\:6t\:+\:2}

Now, t = 1 s,

\displaystyle{\therefore\:\sf\:\alpha\:=\:6\:(\:1\:)\:+\:2}

\displaystyle{\implies\sf\:\alpha\:=\:6\:+\:2}

\displaystyle{\implies\:\underline{\boxed{\red{\sf\:\alpha\:=\:8\:rad\:/\:s^2\:}}}}

The angular acceleration at t = 1 s is 8 rad/s².

Similar questions