if any have potential so do this question its my challenge that no can do it a√a+b√b=183 and a√b+b√a=182 then find 9/5(a+b)
Jaanki:
a+b is in denominator?
Answers
Answered by
0
Let:
= > a = x^2 ------ (1)
Let
= > b = y^2 ------ (2)
Now,
Given Equation becomes:
= > x^3 + y^3 = 183 ----- (3)
= > x^2y + y^2x = 182 ---- (4)
On solving (1) & (2) * 3, we get
= > x^3 + y^3 + 3(x^2y + y^2x) = 183 + 3(182)
= > x^3 + y^3 + 3x^2y + 3y^2x = 183 + 546
= > x^3 + y^3 + 3x^2y + 3y^2x = 729
It is in the form of a^3 + b^3 + 3a^2b + 3ab^2 = (a + b)^3
= > (x + y)^3 = 729
= > (x + y) = 9 ---------- (5)
We know that:
a^3 + b^3 = (a+ b)(a^2 - ab + b^2).
Likewise,
x^3 + y^3 :
= > (x + y)(x^2 + y^2 - xy) = 183
= > (x + y)(x^2 + y^2) - xy(x + y) = 183
= > (9)(x^2 + y^2) - 182 = 183
= > (9)(x^2 + y^2) = 183 + 182
= > (9)(x^2 + y^2) = 365
= > (x^2 + y^2) = 365/9 ------- (6)
From (1) &(2), Equation (6) can be written as:
= > a + b = 365/9 -------- (7)
Now,
Given Equation is 9/5(a + b)
Therefore, the value of 9/5(a + b) = 73.
Hope this helps!
= > a = x^2 ------ (1)
Let
= > b = y^2 ------ (2)
Now,
Given Equation becomes:
= > x^3 + y^3 = 183 ----- (3)
= > x^2y + y^2x = 182 ---- (4)
On solving (1) & (2) * 3, we get
= > x^3 + y^3 + 3(x^2y + y^2x) = 183 + 3(182)
= > x^3 + y^3 + 3x^2y + 3y^2x = 183 + 546
= > x^3 + y^3 + 3x^2y + 3y^2x = 729
It is in the form of a^3 + b^3 + 3a^2b + 3ab^2 = (a + b)^3
= > (x + y)^3 = 729
= > (x + y) = 9 ---------- (5)
We know that:
a^3 + b^3 = (a+ b)(a^2 - ab + b^2).
Likewise,
x^3 + y^3 :
= > (x + y)(x^2 + y^2 - xy) = 183
= > (x + y)(x^2 + y^2) - xy(x + y) = 183
= > (9)(x^2 + y^2) - 182 = 183
= > (9)(x^2 + y^2) = 183 + 182
= > (9)(x^2 + y^2) = 365
= > (x^2 + y^2) = 365/9 ------- (6)
From (1) &(2), Equation (6) can be written as:
= > a + b = 365/9 -------- (7)
Now,
Given Equation is 9/5(a + b)
Therefore, the value of 9/5(a + b) = 73.
Hope this helps!
Similar questions
Math,
7 months ago
English,
7 months ago
Computer Science,
7 months ago
Biology,
1 year ago
Biology,
1 year ago