Math, asked by annu08143, 1 month ago

If anybody know so plz get help me to find out..​

Attachments:

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given polynomial is

\rm :\longmapsto\:f(x) =  {2x}^{4} -  {6x}^{3} +  {3x}^{2} + 3x - 2

Further given that,

\rm :\longmapsto\: - \dfrac{1}{ \sqrt{2} }  \: and \: \dfrac{1}{ \sqrt{2} }  \: are \: zeroes \: of \: f(x)

\rm :\longmapsto\: x- \dfrac{1}{ \sqrt{2} }  \: and \:x +  \dfrac{1}{ \sqrt{2} }  \: are \: factors \: of \: f(x)

\rm :\longmapsto\:\bigg(x - \dfrac{1}{ \sqrt{2} }  \bigg) \bigg(x + \dfrac{1}{ \sqrt{2} }  \bigg)  \: is \: factor \: of \: f(x)

\rm :\longmapsto\:\bigg( {x}^{2}  - \dfrac{1}{2}  \bigg) \: is \: factor \: of \: f(x)

\rm :\longmapsto\:\bigg(  \dfrac{ {2x}^{2}  - 1}{2}  \bigg) \: is \: factor \: of \: f(x)

\rm :\longmapsto\:{2x}^{2}  - 1 \: is \: factor \: of \: f(x)

So, by using long division, we have

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{\underline{\sf{\:\: {x}^{2} - 3x + 2\:\:}}}\\ {\underline{\sf{ {2x}^{2}  - 1}}}& {\sf{\:  {2x}^{4}  - {6x}^{3} + {3x}^{2} + 3x  -  2 \:\:}} \\{\sf{}}& \underline{\sf{-{2x}^{4}  \:  \:  \:  \:  \:  \:  \:  \:   +  {x}^{2}   \:  \:  \:  \:  \:  \:  \:  \:  \: \:\:}} \\ {{\sf{}}}& {\sf{\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\:  -  {6x}^{3} + {4x}^{2}  +  3x - 2  \:  \:  \:  \:   \:  \:  \:  \:\:}} \\{\sf{}}& \underline{\sf{\:\: \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:   \:  \:   {6x}^{3}   \:  \:  \:  \:  \:  \:  \:  \: - 3x  \:  \:  \:  \:  \:  \: \:\:}} \\ {\underline{\sf{}}}& {\sf{\:\: \:  \:  \:  \:  \:  \:  \: {4x}^{2}   - 2  \:\:}} \\{\sf{}}& \underline{\sf{\: \:  \:  \:  \:    \: -  {4x}^{2} + 2\:\:}} \\ {\underline{\sf{}}}& {\sf{\:\: \:  \: \:  \:  \:  \:  \:  \:  \:  \:0\:\:}}  \end{array}\end{gathered}\end{gathered}\end{gathered}

Now, we know that,

Dividend = Divisor × Quotient + Remainder

Here,

\rm :\longmapsto\:Dividend = f(x) =  {2x}^{4} -  {6x}^{3} +  {3x}^{2} + 3x - 2

\rm :\longmapsto\:Divisor =  {2x}^{2}  - 1

\rm :\longmapsto\:Quotient =  {x}^{2} - 3x + 2

\rm :\longmapsto\:Remainder = 0

So,

\rm :\longmapsto\:{2x}^{4} -  {6x}^{3} +  {3x}^{2} + 3x - 2

\rm \:  =  \:( {2x}^{2} - 1)( {x}^{2} - 3x + 2)

\rm \:  =  \:( {2x}^{2} - 1)( {x}^{2} - 2x - x + 2)

\rm \:  =  \:( {2x}^{2} - 1)( {x}(x - 2) -1(x  - 2))

\rm \:  =  \:( {2x}^{2} - 1)((x - 2)(x  - 1)

So,

Remaining zeroes are 2 and 1

Similar questions